We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
151
1
avatar

In triangle $\triangle ABC$, a point $D$ is on $\overline{AC}$ so that $AB = AD$ and $\angle ABC - \angle ACB = 32^{\circ}$. Find $\angle DBC$ in degrees.

 

 

[asy] size(125); pair C = (0,0); pair B = (3,0); pair A = intersectionpoint (C--C+100dir(35),B--B+100dir(115)); pair D = 0.65*C+0.35*A; draw(A--B--C--cycle); draw(B--D); dot(Label("$A$", A, N)); dot(Label("$B$", B, SE)); dot(Label("$C$", C, SW)); dot(Label("$D$", D, NW)); [/asy]

 Sep 22, 2019
edited by Guest  Sep 22, 2019
 #1
avatar+23324 
+1

In triangle \(\triangle ABC\), a point \(D\) is on \(\overline{AC}\) so that \(AB = AD\) and \(\angle ABC - \angle ACB = 32^{\circ}\).
Find \(\angle DBC\) in degrees.

 

\(\begin{array}{|rcll|} \hline \angle ABD &=& \angle ADB \quad & | \quad \angle ADB = \angle DBC + \angle ACB \\ \angle ABD &=& \angle DBC + \angle ACB \quad & | \quad \angle ABD = \angle ABC - \angle DBC \\ \angle ABC - \angle DBC &=& \angle DBC + \angle ACB \\ 2\angle DBC &=& \angle ABC - \angle ACB \quad & | \quad \angle ABC - \angle ACB = 32^{\circ} \\ 2\angle DBC &=& 32^{\circ} \\ \mathbf{\angle DBC} &=& \mathbf{16^{\circ}} \\ \hline \end{array} \)

 

laugh

 Sep 23, 2019

15 Online Users

avatar