Find all values of $t$ such that $6^{3t-1} =36^{t-3}$.
The only "real" solutions is when t = - 5
6^-16 = 36^ - 8
6^-16 = (6^2)^-8
6^-16 = 6^-16
There is also a "complex" solution when t = -5 * [(2.i.pi.n) /ln(6)]
63t - 1 = 36t-3
63t - 1 = 62(t-3)
3t - 1 = 2t - 6
t = -5
Thanks