+0  
 
0
745
1
avatar

Hi! :) is there a way to get the answer in radical form of $$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\frac{{\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{2}}}}}{{\mathtt{2}}}}\right)} = {\mathtt{0.041\: \!111\: \!761\: \!829}}$$  can anyone help me?

 Apr 27, 2015

Best Answer 

 #1
avatar+26367 
+10

sin(3pi/2/2) ?

$$\sin_{(rad)} \left(\dfrac{ \dfrac{3\cdot \pi}{2} }{2} \right)
=\sin_{(rad)} \left( \dfrac{3\cdot \pi}{4} \right)=\frac{1}{2}\sqrt{2}\\\\
\dfrac{3\cdot \pi}{4}\; \rm{rad} \equiv 135 \ensurement{^{\circ}}\\\\
\sin_{(360 \ensurement{^{\circ}} )} \left(135 \ensurement{^{\circ}} \right)
= \frac{1}{2}\sqrt{2}\\\\$$

 

\alpha (°)\alpha (rad)\sin \alpha\cos \alpha\tan \alpha\cot \alpha
0^\circ\,0\,0\,1\,0\pm\infty
15^\circ\tfrac{\pi}{12}\tfrac14(\sqrt{6}-\sqrt{2})\tfrac14(\sqrt{6}+\sqrt{2})2-\sqrt{3}2+\sqrt{3}
18^\circ\tfrac{\pi}{10}\tfrac{1}{4}\left(\sqrt{5}-1\right)\tfrac{1}{4}\sqrt{10+2\sqrt{5}}\tfrac{1}{5}\sqrt{25-10\sqrt{5}}\sqrt{5+ 2\sqrt{5}}
30^\circ\tfrac{\pi}{6}\tfrac12\tfrac12\sqrt3\tfrac13\sqrt3\sqrt3
36^\circ\tfrac{\pi}{5}\tfrac{1}{4} \sqrt{10- 2\sqrt{5}}\tfrac{1}{4} \left (1+ \sqrt{5} \right)\sqrt{5- 2\sqrt{5}}\tfrac{1}{5} \sqrt{25+ 10\sqrt{5}}
45^\circ\tfrac{\pi}{4}\tfrac12\sqrt2\tfrac12\sqrt2 1\, 1\,
54^\circ\tfrac{3\pi}{10}\tfrac{1}{4} \left (1+ \sqrt{5} \right)\tfrac{1}{4} \sqrt{10- 2\sqrt{5}}\tfrac{1}{5} \sqrt{25+ 10\sqrt{5}}\sqrt{5- 2\sqrt{5}}
60^\circ\tfrac{\pi}{3}\tfrac12\sqrt3\tfrac12\sqrt3\tfrac13\sqrt3
72^\circ\tfrac{2\pi}{5}\tfrac{1}{4} \sqrt{10+ 2\sqrt{5}}\tfrac{1}{4} \left (\sqrt{5}-1 \right)\sqrt{5+ 2\sqrt{5}}\tfrac{1}{5} \sqrt{25 - 10\sqrt{5}}
75^\circ\tfrac{5\pi}{12}\tfrac14(\sqrt{6}+\sqrt{2})\tfrac14(\sqrt{6}-\sqrt{2})2+\sqrt{3}2-\sqrt{3}
90^\circ\tfrac{\pi}{2}\,1\,0\pm\infty\,0
108^\circ\tfrac{3\pi}{5}\tfrac{1}{4} \sqrt{10+ 2\sqrt{5}}\tfrac{1}{4} \left (1- \sqrt{5} \right)-\sqrt{5+ 2\sqrt{5}}-\tfrac{1}{5} \sqrt{25 - 10\sqrt{5}}
120^\circ\tfrac{2\pi}{3}\tfrac12\sqrt3-\tfrac12-\sqrt3-\tfrac13\sqrt3
135^\circ\tfrac{3\pi}{4}\tfrac12\sqrt2-\tfrac12\sqrt2-1\,-1\,
180^\circ\pi\,\,0\,-1\,0\pm\infty
270^\circ\tfrac{3\pi}{2}\,-1\,0\pm\infty\,0
360^\circ2\pi\,0\,1\,0

\pm\infty

 Apr 27, 2015
 #1
avatar+26367 
+10
Best Answer

sin(3pi/2/2) ?

$$\sin_{(rad)} \left(\dfrac{ \dfrac{3\cdot \pi}{2} }{2} \right)
=\sin_{(rad)} \left( \dfrac{3\cdot \pi}{4} \right)=\frac{1}{2}\sqrt{2}\\\\
\dfrac{3\cdot \pi}{4}\; \rm{rad} \equiv 135 \ensurement{^{\circ}}\\\\
\sin_{(360 \ensurement{^{\circ}} )} \left(135 \ensurement{^{\circ}} \right)
= \frac{1}{2}\sqrt{2}\\\\$$

 

\alpha (°)\alpha (rad)\sin \alpha\cos \alpha\tan \alpha\cot \alpha
0^\circ\,0\,0\,1\,0\pm\infty
15^\circ\tfrac{\pi}{12}\tfrac14(\sqrt{6}-\sqrt{2})\tfrac14(\sqrt{6}+\sqrt{2})2-\sqrt{3}2+\sqrt{3}
18^\circ\tfrac{\pi}{10}\tfrac{1}{4}\left(\sqrt{5}-1\right)\tfrac{1}{4}\sqrt{10+2\sqrt{5}}\tfrac{1}{5}\sqrt{25-10\sqrt{5}}\sqrt{5+ 2\sqrt{5}}
30^\circ\tfrac{\pi}{6}\tfrac12\tfrac12\sqrt3\tfrac13\sqrt3\sqrt3
36^\circ\tfrac{\pi}{5}\tfrac{1}{4} \sqrt{10- 2\sqrt{5}}\tfrac{1}{4} \left (1+ \sqrt{5} \right)\sqrt{5- 2\sqrt{5}}\tfrac{1}{5} \sqrt{25+ 10\sqrt{5}}
45^\circ\tfrac{\pi}{4}\tfrac12\sqrt2\tfrac12\sqrt2 1\, 1\,
54^\circ\tfrac{3\pi}{10}\tfrac{1}{4} \left (1+ \sqrt{5} \right)\tfrac{1}{4} \sqrt{10- 2\sqrt{5}}\tfrac{1}{5} \sqrt{25+ 10\sqrt{5}}\sqrt{5- 2\sqrt{5}}
60^\circ\tfrac{\pi}{3}\tfrac12\sqrt3\tfrac12\sqrt3\tfrac13\sqrt3
72^\circ\tfrac{2\pi}{5}\tfrac{1}{4} \sqrt{10+ 2\sqrt{5}}\tfrac{1}{4} \left (\sqrt{5}-1 \right)\sqrt{5+ 2\sqrt{5}}\tfrac{1}{5} \sqrt{25 - 10\sqrt{5}}
75^\circ\tfrac{5\pi}{12}\tfrac14(\sqrt{6}+\sqrt{2})\tfrac14(\sqrt{6}-\sqrt{2})2+\sqrt{3}2-\sqrt{3}
90^\circ\tfrac{\pi}{2}\,1\,0\pm\infty\,0
108^\circ\tfrac{3\pi}{5}\tfrac{1}{4} \sqrt{10+ 2\sqrt{5}}\tfrac{1}{4} \left (1- \sqrt{5} \right)-\sqrt{5+ 2\sqrt{5}}-\tfrac{1}{5} \sqrt{25 - 10\sqrt{5}}
120^\circ\tfrac{2\pi}{3}\tfrac12\sqrt3-\tfrac12-\sqrt3-\tfrac13\sqrt3
135^\circ\tfrac{3\pi}{4}\tfrac12\sqrt2-\tfrac12\sqrt2-1\,-1\,
180^\circ\pi\,\,0\,-1\,0\pm\infty
270^\circ\tfrac{3\pi}{2}\,-1\,0\pm\infty\,0
360^\circ2\pi\,0\,1\,0

\pm\infty

heureka Apr 27, 2015

2 Online Users

avatar