+0

# How can i get the sum of interior angles

0
461
3

How can i get the sum of interior angles of any polygon ?

Guest Feb 9, 2015

#2
+20633
+5

How can i get the sum of interior angles of any polygon ?

The sum of interior angles of a 3 Point polygon = 1 ( triangle )  =   $$1*\pi$$

The sum of interior angles of a 4 Point polygon = 2 ( triangle )  =   $$2*\pi$$

The sum of interior angles of a 5 Point polygon = 3 ( triangle )  =   $$3*\pi$$

The sum of interior angles of a 6 Point polygon = 4 ( triangle )  =   $$4*\pi$$

$$\dots$$

The sum of interior angles of a n Point polygon = n-2 ( triangle )  =   $$\qquad\small{\text{ (n-2)*\pi \quad  or  \quad (n-2)* 180 \ensurement{^{\circ}}  }}$$

heureka  Feb 9, 2015
#1
+11852
+5

different polygons have different sums....which one do you want?

rosala  Feb 9, 2015
#2
+20633
+5

How can i get the sum of interior angles of any polygon ?

The sum of interior angles of a 3 Point polygon = 1 ( triangle )  =   $$1*\pi$$

The sum of interior angles of a 4 Point polygon = 2 ( triangle )  =   $$2*\pi$$

The sum of interior angles of a 5 Point polygon = 3 ( triangle )  =   $$3*\pi$$

The sum of interior angles of a 6 Point polygon = 4 ( triangle )  =   $$4*\pi$$

$$\dots$$

The sum of interior angles of a n Point polygon = n-2 ( triangle )  =   $$\qquad\small{\text{ (n-2)*\pi \quad  or  \quad (n-2)* 180 \ensurement{^{\circ}}  }}$$

heureka  Feb 9, 2015
#3
+2
0

All you have to do is change the caculator to the angle version that's on the bottom left corner.

variablenumbers  Feb 9, 2015