+0  
 
0
64
2
avatar+14 

My math program says that you can transform....

 \(1/sec\theta * tan\theta = sin\theta \)

Into...

\(tan^2\theta + 1 = sec^2\theta\)

Could someone explain how they made this transition? Thanks!

CurlyFry  Oct 20, 2017

Best Answer 

 #2
avatar+18715 
+2

My math program says that you can transform....
\(1/sec\theta * tan\theta = sin\theta\)
Into...
\(tan^2\theta + 1 = sec^2\theta\)
Could someone explain how they made this transition?

 

\(\begin{array}{|rcll|} \hline \frac{1}{\sec(\theta)} * \tan(\theta) &=& \sin(\theta) \quad & | \quad \cdot \sec(\theta) \\ \tan(\theta) &=& \sin(\theta) \cdot \sec(\theta) \quad & | \quad \text{square both sides} \\ \tan^2(\theta) &=& \sin^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sin^2(\theta) + \cos^2(\theta) = 1 \text{ or } \sin^2(\theta) = 1-\cos^2(\theta) \\ \tan^2(\theta) &=& [~1-\cos^2(\theta)~] \cdot \sec^2(\theta) \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sec^2(\theta) = \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \frac{\cos^2(\theta)}{\cos^2(\theta)} \quad & | \quad \frac{\cos^2(\theta)}{\cos^2(\theta)} = 1 \\ \tan^2(\theta) &=& \sec^2(\theta) - 1 \quad & | \quad +1 \\ \mathbf{\tan^2(\theta)+1} &\mathbf{=}& \mathbf{\sec^2(\theta)} \\ \hline \end{array}\)

 

laugh

heureka  Oct 20, 2017
Sort: 

2+0 Answers

 #1
avatar+78755 
+1

Here's a ( highly questionable ) proceedure.......

 

1/sec * tan  =  sin

 

cos * sin/cos  = sin

 

sin  = sin                multiply both sides by the sin

 

sin^2  = sin^2

 

sin^2  =  1 - cos^2       add cos^2  to both sides

 

sin^2 + cos^2  =  1       divide through by cos^2

 

sin^2 / cos^2    + 1  =  1 / cos^1

 

tan^2  +  1  =  sec^2

 

Note :  multiplying/dividing on both sides of an identity isn't usually allowed......!!!!

 

 

cool cool cool

CPhill  Oct 20, 2017
edited by CPhill  Oct 20, 2017
edited by CPhill  Oct 20, 2017
 #2
avatar+18715 
+2
Best Answer

My math program says that you can transform....
\(1/sec\theta * tan\theta = sin\theta\)
Into...
\(tan^2\theta + 1 = sec^2\theta\)
Could someone explain how they made this transition?

 

\(\begin{array}{|rcll|} \hline \frac{1}{\sec(\theta)} * \tan(\theta) &=& \sin(\theta) \quad & | \quad \cdot \sec(\theta) \\ \tan(\theta) &=& \sin(\theta) \cdot \sec(\theta) \quad & | \quad \text{square both sides} \\ \tan^2(\theta) &=& \sin^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sin^2(\theta) + \cos^2(\theta) = 1 \text{ or } \sin^2(\theta) = 1-\cos^2(\theta) \\ \tan^2(\theta) &=& [~1-\cos^2(\theta)~] \cdot \sec^2(\theta) \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sec^2(\theta) = \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \frac{\cos^2(\theta)}{\cos^2(\theta)} \quad & | \quad \frac{\cos^2(\theta)}{\cos^2(\theta)} = 1 \\ \tan^2(\theta) &=& \sec^2(\theta) - 1 \quad & | \quad +1 \\ \mathbf{\tan^2(\theta)+1} &\mathbf{=}& \mathbf{\sec^2(\theta)} \\ \hline \end{array}\)

 

laugh

heureka  Oct 20, 2017

7 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details