My math program says that you can transform....
\(1/sec\theta * tan\theta = sin\theta \)
Into...
\(tan^2\theta + 1 = sec^2\theta\)
Could someone explain how they made this transition? Thanks!
My math program says that you can transform....
\(1/sec\theta * tan\theta = sin\theta\)
Into...
\(tan^2\theta + 1 = sec^2\theta\)
Could someone explain how they made this transition?
\(\begin{array}{|rcll|} \hline \frac{1}{\sec(\theta)} * \tan(\theta) &=& \sin(\theta) \quad & | \quad \cdot \sec(\theta) \\ \tan(\theta) &=& \sin(\theta) \cdot \sec(\theta) \quad & | \quad \text{square both sides} \\ \tan^2(\theta) &=& \sin^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sin^2(\theta) + \cos^2(\theta) = 1 \text{ or } \sin^2(\theta) = 1-\cos^2(\theta) \\ \tan^2(\theta) &=& [~1-\cos^2(\theta)~] \cdot \sec^2(\theta) \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sec^2(\theta) = \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \frac{\cos^2(\theta)}{\cos^2(\theta)} \quad & | \quad \frac{\cos^2(\theta)}{\cos^2(\theta)} = 1 \\ \tan^2(\theta) &=& \sec^2(\theta) - 1 \quad & | \quad +1 \\ \mathbf{\tan^2(\theta)+1} &\mathbf{=}& \mathbf{\sec^2(\theta)} \\ \hline \end{array}\)
Here's a ( highly questionable ) proceedure.......
1/sec * tan = sin
cos * sin/cos = sin
sin = sin multiply both sides by the sin
sin^2 = sin^2
sin^2 = 1 - cos^2 add cos^2 to both sides
sin^2 + cos^2 = 1 divide through by cos^2
sin^2 / cos^2 + 1 = 1 / cos^1
tan^2 + 1 = sec^2
Note : multiplying/dividing on both sides of an identity isn't usually allowed......!!!!
My math program says that you can transform....
\(1/sec\theta * tan\theta = sin\theta\)
Into...
\(tan^2\theta + 1 = sec^2\theta\)
Could someone explain how they made this transition?
\(\begin{array}{|rcll|} \hline \frac{1}{\sec(\theta)} * \tan(\theta) &=& \sin(\theta) \quad & | \quad \cdot \sec(\theta) \\ \tan(\theta) &=& \sin(\theta) \cdot \sec(\theta) \quad & | \quad \text{square both sides} \\ \tan^2(\theta) &=& \sin^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sin^2(\theta) + \cos^2(\theta) = 1 \text{ or } \sin^2(\theta) = 1-\cos^2(\theta) \\ \tan^2(\theta) &=& [~1-\cos^2(\theta)~] \cdot \sec^2(\theta) \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \sec^2(\theta) \quad & | \quad \sec^2(\theta) = \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \cos^2(\theta) \cdot \frac{1}{\cos^2(\theta)} \\ \tan^2(\theta) &=& \sec^2(\theta) - \frac{\cos^2(\theta)}{\cos^2(\theta)} \quad & | \quad \frac{\cos^2(\theta)}{\cos^2(\theta)} = 1 \\ \tan^2(\theta) &=& \sec^2(\theta) - 1 \quad & | \quad +1 \\ \mathbf{\tan^2(\theta)+1} &\mathbf{=}& \mathbf{\sec^2(\theta)} \\ \hline \end{array}\)