+0  
 
+3
3425
1
avatar

A logistic growth model for world population, f(x), in billions, x years after 1970 is f(x)= 12.57/(1+4.11e^-.026t). According to this model, the world population will be 9 billion in___.

 Sep 26, 2014

Best Answer 

 #1
avatar+23252 
+8

f(x) = 9

9 = 12.57 / (1 + 4.11 e^( -.026t) )

9(1 + 4.11e^(-.026t) )= 12.57                         Cross multiply

1 + 4.11e^(-.026t) = 12.57 / 9                 Divide by 9. Feel free to calculate and use decimals from here.

4.11e^(-.026t)  = 12.57 / 9  - 1                        Subtract 1.

e^(-.026t) = ( 12.57 / 9  - 1 ) / 4.11                  Divide by 4.11.

ln( e^(-.026t) ) = ln(  (12.57 / 9  - 1) / 4.11 )     Since the variable is in the exponent, find the ln of both                                                                             sides; also, use log instead, if you wish.

-.026t x ln( e ) = ln(  (12.57 / 9  - 1 ) / 4.11 )     The exponent comes out as a multiplier.

-.026t  = ln(  (12.57 / 9  - 1) / 4.11 )                  The ln(e) = 1; it will disappear in multiplication.       

t = ( ln(  ( 12.57 / 9  - 1 ) / 4.11 ) ) / -.026            Divide by -.026.

Add this answer to 1970.

 Sep 27, 2014
 #1
avatar+23252 
+8
Best Answer

f(x) = 9

9 = 12.57 / (1 + 4.11 e^( -.026t) )

9(1 + 4.11e^(-.026t) )= 12.57                         Cross multiply

1 + 4.11e^(-.026t) = 12.57 / 9                 Divide by 9. Feel free to calculate and use decimals from here.

4.11e^(-.026t)  = 12.57 / 9  - 1                        Subtract 1.

e^(-.026t) = ( 12.57 / 9  - 1 ) / 4.11                  Divide by 4.11.

ln( e^(-.026t) ) = ln(  (12.57 / 9  - 1) / 4.11 )     Since the variable is in the exponent, find the ln of both                                                                             sides; also, use log instead, if you wish.

-.026t x ln( e ) = ln(  (12.57 / 9  - 1 ) / 4.11 )     The exponent comes out as a multiplier.

-.026t  = ln(  (12.57 / 9  - 1) / 4.11 )                  The ln(e) = 1; it will disappear in multiplication.       

t = ( ln(  ( 12.57 / 9  - 1 ) / 4.11 ) ) / -.026            Divide by -.026.

Add this answer to 1970.

geno3141 Sep 27, 2014

4 Online Users

avatar