+0  
 
+3
1083
2
avatar

How do I solve a two step equation with a fraction in it? 

ex.

(2/3)+(3k/8)=19  ?

How am I supposed to isolate the variable? And how do I get rid of the 2/3? 

 Dec 1, 2014

Best Answer 

 #2
avatar+118687 
+8

Sorasyn, these are great examples :)

With you first example

$$\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{7}}}}\right) = {\mathtt{6}}$$

It is easier if you multiply both sides  by 35 right from the beginning.

$${\mathtt{35}}{\mathtt{\,\times\,}}\left(\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{7}}}}\right)\right) = {\mathtt{35}}{\mathtt{\,\times\,}}{\mathtt{6}}$$

 

$$\left({\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}\right) = {\mathtt{210}}$$

 

$${\mathtt{28}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{210}}$$

 Dec 2, 2014
 #1
avatar+109 
+5

Get a common denominator, and then solve the equation like so:

 

$$\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{7}}}}\right) = {\mathtt{6}}$$

 

 

$$\left({\frac{{\mathtt{28}}}{{\mathtt{35}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{35}}}}\right) = {\mathtt{6}}$$

 

 

$${\frac{\left({\mathtt{28}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{{\mathtt{35}}}} = {\mathtt{6}}$$

 

 

$${\mathtt{28}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{210}}$$

 

 

$${\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{182}}$$

 

 

$${\mathtt{x}} = {\frac{{\mathtt{182}}}{{\mathtt{20}}}}$$

 Dec 1, 2014
 #2
avatar+118687 
+8
Best Answer

Sorasyn, these are great examples :)

With you first example

$$\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{7}}}}\right) = {\mathtt{6}}$$

It is easier if you multiply both sides  by 35 right from the beginning.

$${\mathtt{35}}{\mathtt{\,\times\,}}\left(\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{7}}}}\right)\right) = {\mathtt{35}}{\mathtt{\,\times\,}}{\mathtt{6}}$$

 

$$\left({\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{4}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}\right) = {\mathtt{210}}$$

 

$${\mathtt{28}}{\mathtt{\,\small\textbf+\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{210}}$$

Melody Dec 2, 2014

3 Online Users

avatar