+0  
 
0
342
2
avatar

3^(x+1)=2^(x+2)

Guest Apr 10, 2017
 #1
avatar+7024 
+2

\(3^{x+1}=2^{x+2}\\ (x+1)\ln 3=(x+2)\ln2\\ x\ln 3 - x\ln 2 = 2\ln 2 - \ln 3\\ x = \dfrac{2\ln 2 - \ln 3}{\ln 3 - \ln 2}\)

Use the calculator and you get the answer.

MaxWong  Apr 10, 2017
 #2
avatar+20025 
+5

3^(x+1)=2^(x+2)

 

\(\begin{array}{|rcll|} \hline 3^{x+1}& = & 2^{x+2} \\ 3^{x+1}& = & 2^{x+1}\cdot 2^1 \quad & | \quad : 2^{x+1} \\ \frac{ 3^{x+1} } {2^{x+1}} & = & 2 \\ (\frac32)^{x+1} & = & 2 \\ (1.5)^{{x+1}} & = & 2 \quad & | \quad \ln \text{both sides} \\ \ln\Big((1.5)^{x+1} \Big) & = & \ln(2) \quad & | \quad \ln(a^b) = b\cdot \ln(a) \\ (x+1)\cdot \ln(1.5) & = & \ln(2) \quad & | \quad : \ln(1.5) \\ x+1& = & \frac{\ln(2)} { \ln(1.5) } \quad & | \quad -1 \\ x & = & \frac{\ln(2)} { \ln(1.5) } -1 \\ x & = & 0.70951129135 \\ \hline \end{array}\)

 

laugh

heureka  Apr 10, 2017

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.