+0  
 
0
779
1
avatar

How do I type in this question?

 Mar 31, 2017

Best Answer 

 #1
avatar+118667 
+2

my answer

 

\(y=log_bx\qquad \\ \text{Make x the subject}\\ b^y=b^{log_bx}\\ b^y=x \text{swap x and y over to find the inverse function}\\ b^x=y\\ y=b^x \)

 

So I have determined that  the second funtion is the inverse of the first one.

So this means that they are reflections of one another across the line y=x

so draw the line y=x and reflect each ot the points across it and you will have the points for the second graph.

 

So

(1,0) becomes (0,1)

(2,1) becomes (1,2)

etc    

 Apr 1, 2017
 #1
avatar+118667 
+2
Best Answer

my answer

 

\(y=log_bx\qquad \\ \text{Make x the subject}\\ b^y=b^{log_bx}\\ b^y=x \text{swap x and y over to find the inverse function}\\ b^x=y\\ y=b^x \)

 

So I have determined that  the second funtion is the inverse of the first one.

So this means that they are reflections of one another across the line y=x

so draw the line y=x and reflect each ot the points across it and you will have the points for the second graph.

 

So

(1,0) becomes (0,1)

(2,1) becomes (1,2)

etc    

Melody Apr 1, 2017

4 Online Users

avatar