+0  
 
0
666
3
avatar

how do i work out 5³x5x5⁴x5²=

help please?

 May 2, 2015

Best Answer 

 #1
avatar+870 
+5

$$n^a \times n^b=n^{a+b}$$

So $${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{1}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right)} = {{\mathtt{5}}}^{{\mathtt{10}}} = {\mathtt{9\,765\,625}}$$

.
 May 2, 2015
 #1
avatar+870 
+5
Best Answer

$$n^a \times n^b=n^{a+b}$$

So $${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{1}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right)} = {{\mathtt{5}}}^{{\mathtt{10}}} = {\mathtt{9\,765\,625}}$$

EinsteinJr May 2, 2015
 #2
avatar+4711 
0

$${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {\mathtt{9\,765\,625}}$$

 

5^3 = 5*5*5 =125

 

125 * 25 =3125

 

3125 * (5*5*5*5) = (cant do in my head)

 

$${\mathtt{3\,125}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}} = {\mathtt{1\,953\,125}}$$

 

Then  1953125*5^2=

 

$${\mathtt{1\,953\,125}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {\mathtt{48\,828\,125}}$$

.
 May 2, 2015
 #3
avatar+4711 
0

i dont know what i done

 May 2, 2015

1 Online Users