$$n^a \times n^b=n^{a+b}$$
So $${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{1}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right)} = {{\mathtt{5}}}^{{\mathtt{10}}} = {\mathtt{9\,765\,625}}$$
.$$n^a \times n^b=n^{a+b}$$
So $${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{1}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {{\mathtt{5}}}^{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right)} = {{\mathtt{5}}}^{{\mathtt{10}}} = {\mathtt{9\,765\,625}}$$
$${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {\mathtt{9\,765\,625}}$$
5^3 = 5*5*5 =125
125 * 25 =3125
3125 * (5*5*5*5) = (cant do in my head)
$${\mathtt{3\,125}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{4}}} = {\mathtt{1\,953\,125}}$$
Then 1953125*5^2=
$${\mathtt{1\,953\,125}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{2}}} = {\mathtt{48\,828\,125}}$$
.