+0  
 
0
267
1
avatar

how do we solve ((81x^-4)/(16y^4))^-(3/4) ?

Guest Sep 30, 2014

Best Answer 

 #1
avatar+26412 
+10

There is nothing to solve, but we can simplify it:

 

$$(\frac{81x^{-4}}{16y^4})^{-\frac{3}{4}}\\\\
(\frac{81}{16x^4y^4})^{-\frac{3}{4}}\\\\
(\frac{81^{\frac{1}{4}}}{16^{\frac{1}{4}}x^{4\frac{1}{4}}y^{4\frac{1}{4}}})^{-3}\\\\
(\frac{3}{2xy})^{-3}\\\\
\frac{2^3x^3y^3}{3^3}\\\\
\frac{8x^3y^3}{27}$$

Alan  Sep 30, 2014
Sort: 

1+0 Answers

 #1
avatar+26412 
+10
Best Answer

There is nothing to solve, but we can simplify it:

 

$$(\frac{81x^{-4}}{16y^4})^{-\frac{3}{4}}\\\\
(\frac{81}{16x^4y^4})^{-\frac{3}{4}}\\\\
(\frac{81^{\frac{1}{4}}}{16^{\frac{1}{4}}x^{4\frac{1}{4}}y^{4\frac{1}{4}}})^{-3}\\\\
(\frac{3}{2xy})^{-3}\\\\
\frac{2^3x^3y^3}{3^3}\\\\
\frac{8x^3y^3}{27}$$

Alan  Sep 30, 2014

5 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details