+0

# How do you derive the power rule that is used in calculus for differentiation?

0
305
2

How do you derive the power rule that is used in calculus for differentiation?

Guest Oct 1, 2014

#2
+85699
+5

We can also find this by using the difference quotient and the binomial theorem......suppose we want to find the derivative of xn   ...... so we have.....

lim          [ (x + Δx)n - xn ] / (Δx)   Δx → 0

And by the binomial theorem, we can write

lim          [ xn + C(n, 1)xn-1 Δx + C(n,2) xn-2 Δx2 + ..... +C(n, n-1) xΔxn-1 + C(n, n)Δxn  - xn ] / (Δx)

Δx → 0

lim          [C(n,1) xn-1 Δx + C(n,2)xn-2 Δx2 + ..... +C(n, n-1) xΔxn-1 +C(n, n) Δxn ] / (Δx)

Δx → 0

.... factor out Δx in the numerator...

lim         (Δx) [C(n, 1) xn-1  +C(n, 2) xn-2 Δx + ..... +C(n, n-1) xΔxn-2 +C (n, n) Δxn-1 ] / (Δx)

Δx → 0

lim          [C(n, 1) xn-1  + C(n, 2) xn-2 Δx + ..... +C(n, n-1) xΔxn-2 + C(n, n) Δxn-1 ]

Δx → 0

And taking the limit as Δx → 0 we have

C(n,1) x n-1   ..........  but   C(n, 1) is just n......so we have......

nxn-1

CPhill  Oct 1, 2014
Sort:

#1
+17721
+5

Start by writing  x^n as e^(n lnx ).

d( x^n )/dx  =  d( e^(n lnx ) )/dx

=  e^( n ln x ) · d( n ln x )/dx                        chain rule

= x^n · ( n/x )

= n · x^( n - 1 )

geno3141  Oct 1, 2014
#2
+85699
+5

We can also find this by using the difference quotient and the binomial theorem......suppose we want to find the derivative of xn   ...... so we have.....

lim          [ (x + Δx)n - xn ] / (Δx)   Δx → 0

And by the binomial theorem, we can write

lim          [ xn + C(n, 1)xn-1 Δx + C(n,2) xn-2 Δx2 + ..... +C(n, n-1) xΔxn-1 + C(n, n)Δxn  - xn ] / (Δx)

Δx → 0

lim          [C(n,1) xn-1 Δx + C(n,2)xn-2 Δx2 + ..... +C(n, n-1) xΔxn-1 +C(n, n) Δxn ] / (Δx)

Δx → 0

.... factor out Δx in the numerator...

lim         (Δx) [C(n, 1) xn-1  +C(n, 2) xn-2 Δx + ..... +C(n, n-1) xΔxn-2 +C (n, n) Δxn-1 ] / (Δx)

Δx → 0

lim          [C(n, 1) xn-1  + C(n, 2) xn-2 Δx + ..... +C(n, n-1) xΔxn-2 + C(n, n) Δxn-1 ]

Δx → 0

And taking the limit as Δx → 0 we have

C(n,1) x n-1   ..........  but   C(n, 1) is just n......so we have......

nxn-1

CPhill  Oct 1, 2014

### 17 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details