Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3095
2
avatar

how do you do the derivative of 6.687(.931)^x?

 Apr 16, 2015

Best Answer 

 #2
avatar+118703 
+5

Ify=axthendydx=(lna)ax

 

Mmm, I didn't know this short cut Chris,  I will have to try and remember it!    Wish me luck. :)

 

This is how I would have done it,

 

y=6.6870.9316xy6.687=0.9316xln(y6.687)=ln(0.9316x)ln(y)ln(6.6870)=xln(0.9316)1ydydx0=ln(0.9316)dydx=yln(0.9316)$subiny$dydx=6.6870.9316xln(0.9316)dydx=6.687ln(0.9316)0.9316x

.
 Apr 17, 2015
 #1
avatar+130477 
+5

The derivative of a^x =   ln(a) * a^x     

So, the derivative of (.931)^x  =   ln(.931) * (.931)^x

You can evaluate ln(.931) on your calculator......then.....multiply that times 6.687  and then "tack" the   "(.931)^x  "  part on at the end.......

 

 

  

 Apr 16, 2015
 #2
avatar+118703 
+5
Best Answer

Ify=axthendydx=(lna)ax

 

Mmm, I didn't know this short cut Chris,  I will have to try and remember it!    Wish me luck. :)

 

This is how I would have done it,

 

y=6.6870.9316xy6.687=0.9316xln(y6.687)=ln(0.9316x)ln(y)ln(6.6870)=xln(0.9316)1ydydx0=ln(0.9316)dydx=yln(0.9316)$subiny$dydx=6.6870.9316xln(0.9316)dydx=6.687ln(0.9316)0.9316x

Melody Apr 17, 2015

1 Online Users