(sin(-4pi/3))(cos(11pi/6))-(tan(5pi/6))(cos(pi/3))
sin(−4π3)(cos(11π6)−tan(5π6)(cosπ3)=sin(2π+−4π3)(cos(2π−11π6))−tan(5π6)(cosπ3)=sin(2π3)(cos(π6))−tan(5π6)(cosπ3)=sin(π3)(cos(π6))−−tan(π6)(cosπ3)=√32×√32+1√3×12=34+12√3×√3√3=34+√36=912+2√312=9+2√312