+0  
 

Best Answer 

 #2
avatar+20530 
+10

x + 2y - 6 = 0

$$x + 2y - 6 = 0\\
2y=-x+6\\
\boxed{y=f(x)=-\frac{1}{2}x+3}\\\\
\small{\text{
r = radius of the circle
}}\\
\small{\text{
$
x=f(x)=r
$
}}\\
\small{\text{
$
x=-\frac{1}{2}x+3
$
}}\\
\small{\text{$\frac{1}{2}x+x=3 $}}\\
\small{\text{$\frac{3}{2}x=3 $}}\\
\small{\text{$x=\frac{2}{3}*3=2$}}\\
\small{\text{$r=2$. The center of the circle is $(x_m,\ y_m) =\ ( 2,\ 2)$
}}\\
\small{\text{The equation of the circle is:
}}\\
\small{\text{
$
(x-x_m)^2+(y-y_m)^2=r^2 \qquad (x-2)^2+(y-2)^2=2^2
$
}}$$

heureka  Feb 3, 2015
 #1
avatar+92367 
+10

We're looking for a point on the line that is an equal distance to both axis..........thus, we're looking for a point such that x = y

So, we have

x + 2y - 6 = 0      let y = x

x + 2x - 6  = 0

3x - 6  = 0

3x = 6

x = 2

And by the same rationale, y= 2

Thus, our center is (2,2)   and the radius = 2

Here's a graph...

GRAPH

 

CPhill  Feb 3, 2015
 #2
avatar+20530 
+10
Best Answer

x + 2y - 6 = 0

$$x + 2y - 6 = 0\\
2y=-x+6\\
\boxed{y=f(x)=-\frac{1}{2}x+3}\\\\
\small{\text{
r = radius of the circle
}}\\
\small{\text{
$
x=f(x)=r
$
}}\\
\small{\text{
$
x=-\frac{1}{2}x+3
$
}}\\
\small{\text{$\frac{1}{2}x+x=3 $}}\\
\small{\text{$\frac{3}{2}x=3 $}}\\
\small{\text{$x=\frac{2}{3}*3=2$}}\\
\small{\text{$r=2$. The center of the circle is $(x_m,\ y_m) =\ ( 2,\ 2)$
}}\\
\small{\text{The equation of the circle is:
}}\\
\small{\text{
$
(x-x_m)^2+(y-y_m)^2=r^2 \qquad (x-2)^2+(y-2)^2=2^2
$
}}$$

heureka  Feb 3, 2015

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.