csc2(x) · sec(x) / sec2(x) + csc2(x)
= csc2(x) · [ sec(x) / sec2(x) ] + csc2(x)
= csc2(x) · [ 1 /sec(x) ] + csc2(x) <--- simplify: sec(x) / sec2(x)
= csc2(x) · ( cos(x) ) + csc2(x) <--- cos(x) = 1 / sec(x)
= csc2(x) · [ cos(x) + 1 ] <--- factor
= [ 1 / sin2(x) ] · [ cos(x) + 1 ] <--- csc2(x) = 1 / sin2(x)
= [ cos(x) + 1 ] / sin2(x)
= [ cos(x) + 1 ] / [ 1 - cos2(x) ] <--- sin²(x) = 1 - cos²(x)
= [ cos(x) + 1 ] / [ ( 1 - cos(x) )·( 1 - cos(x) ) ] <--- factor
= 1 / [ 1 - cos(x) ] <--- provided that sec²(x) ≠ 0, cos(x) ≠ 0
I think this might be [csc^2x secx] / [sec^2x+csc^2x ].....if so, convert to sines and cosines
[ 1 / sin^2x * 1 / cosx ] / [ 1 / cos^2x + 1 / sin^2x ] simplify the denominator
[ 1 / sin^2x * 1 / cosx ] / [(sin^2x + cos^2x) / (cos^2x sin^2x) ] =
[ 1 /(sin^2x * cosx)] / [1 /( cos^2x * sin^2x) ] =
( cos^2x * sin^2x) ] / (sin^2x * cosx) =
cosx
2 answers WOW
2 for the price of one - arn't you the lucky anon.
Actually it is kind of good. You should be able to work out where the error lies. :)
It is an excellent learning technique.