how do you simplify tan theta plus cot theta using fundamental identities
$$tan\theta+cot\theta\\\\
=\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}\\\\
=\frac{sin^2\theta}{cos\theta sin\theta}+\frac{cos^2\theta}{sin\theta\cos\theta}\\\\
=\frac{1}{cos\theta sin\theta}\\\\
=\frac{2}{2cos\theta sin\theta}\\\\
=\frac{2}{sin2\theta}\\\\$$
You can try this: tan(θ) + cot(θ)
= tan(θ) + 1/tan(θ)
= tan²(θ)/tan(θ) + 1/tan(θ)
= [tan²(θ) + 1] / tan(θ)
= sec²(θ)/tan(θ)
or this: tan(θ) + cot(θ)
= sin(θ)/cos(θ) + cos(θ)/sin(θ)
= [sin(θ)sin(θ)]/[sin(θ)cos(θ)] + [cos(θ)cos(θ)]/[sin(θ)cos(θ)]
= sin²(θ)/[sin(θ)cos(θ)] + cos²(θ)/[sin(θ)cos(θ)]
= [sin²(θ) + cos²(θ)]/[sin(θ)cos(θ)]
= 1/[sin(θ)cos(θ)]