n^2(n+1)^2/4+4(n+1)^3/4
n^2(n+1)^2/4+4(n+1)^3/4 =
[ (n + 1)^2 [ n^2 + 4(n + 1) ] / 4
[ (n + 1)^2 [ n^2 + 4 n + 4] / 4 =
[ (n + 1)^2 [ n + 2] ^2 / 4
n2(n + 1)2 / 4 + 4(n + 1)3 / 4
n2(n + 1)2 / 4 = n2(n2 + 2n + 1) / 4 = (n4 + 2n3 + n2) / 4
4(n + 1)3 / 4= n3 + 3n2 + 3n + 1
n4 + 2n3 + n2 + 4n3 + 12n2 + 12n + 4 = (n4 + 6n3 + 13n2 + 12n + 4) / 4