+0  
 
+5
393
3
avatar

How do you solve the conic of 16x^2 - y^2 +16y -128 =0

Guest May 4, 2015

Best Answer 

 #1
avatar+78574 
+15

16x^2 - y^2 +16y -128 =0   add 128 to both sides

16x^2 - y^2 +16y  = 128     complete the square on y

16x^2 - (y^2 - 16y + 64) = 128 - 64    simplify

16x^2 - (y - 8)^2  = 64       divide both sides by 64

x^2 / 4  - (y - 8)^2  / 64   = 1

 

This is a hyperbola with a center of (0, 8)......a = 2 and b = 8...the focal points are at (±√68, 8)

Here's a graph ........https://www.desmos.com/calculator/hagrdi3shl

 

 

  

CPhill  May 4, 2015
Sort: 

3+0 Answers

 #1
avatar+78574 
+15
Best Answer

16x^2 - y^2 +16y -128 =0   add 128 to both sides

16x^2 - y^2 +16y  = 128     complete the square on y

16x^2 - (y^2 - 16y + 64) = 128 - 64    simplify

16x^2 - (y - 8)^2  = 64       divide both sides by 64

x^2 / 4  - (y - 8)^2  / 64   = 1

 

This is a hyperbola with a center of (0, 8)......a = 2 and b = 8...the focal points are at (±√68, 8)

Here's a graph ........https://www.desmos.com/calculator/hagrdi3shl

 

 

  

CPhill  May 4, 2015
 #2
avatar+90988 
+10

Thanks Chris, these are really interesting questions.  There is much I could learn from your answer  :)

Melody  May 5, 2015
 #3
avatar+78574 
+10

Thanks, Melody.........these conics have many facets......I barely touched the surface.....LOL!!!!

 

  

CPhill  May 5, 2015

8 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details