+0  
 
0
36
1
avatar

Three points are on the same line if the slope of the line through the first two points is the same as the slope of the line through the second two points. For what value of $c$ are the three points $(2,4)$, $(6,3)$, and $(-5,c)$ on the same line?

Guest Nov 12, 2017

Best Answer 

 #1
avatar+5263 
+1

the slope between two points   \(=\,\frac{\text{difference in y values}}{\text{difference in x values}}\)

 

the slope between  (2, 4)  and  (6, 3)   \(=\,\frac{3-4}{6-2}\)

 

the slope between  (2, 4)  and  (6, 3)   \(=\,-\frac{1}{4}\)

 

And we know that the slope between  (6, 3)  and  (-5, c)  also equals  -\(\frac14\) .  So we know

 

\(-\frac14\,=\,\frac{c-3}{-5-6}\\~\\ -\frac14\,=\,\frac{c-3}{-11}\)

                                              Multiply both sides of the equation by  -11 .

\(\frac{11}4\,=\,c-3\)

                                              Add  3  to both sides.

\(\frac{11}4+3\,=\,c \\~\\ c\,=\,\frac{23}{4}\,=\,5.75\)

 

Here is a graph to show that these points lie on the same line.

hectictar  Nov 12, 2017
Sort: 

1+0 Answers

 #1
avatar+5263 
+1
Best Answer

the slope between two points   \(=\,\frac{\text{difference in y values}}{\text{difference in x values}}\)

 

the slope between  (2, 4)  and  (6, 3)   \(=\,\frac{3-4}{6-2}\)

 

the slope between  (2, 4)  and  (6, 3)   \(=\,-\frac{1}{4}\)

 

And we know that the slope between  (6, 3)  and  (-5, c)  also equals  -\(\frac14\) .  So we know

 

\(-\frac14\,=\,\frac{c-3}{-5-6}\\~\\ -\frac14\,=\,\frac{c-3}{-11}\)

                                              Multiply both sides of the equation by  -11 .

\(\frac{11}4\,=\,c-3\)

                                              Add  3  to both sides.

\(\frac{11}4+3\,=\,c \\~\\ c\,=\,\frac{23}{4}\,=\,5.75\)

 

Here is a graph to show that these points lie on the same line.

hectictar  Nov 12, 2017

2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details