Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
17
2
avatar+43 

Points A, B, and C are given in the coordinate plane. There exists a point Q and a constant k such that for any point P,
PA² + PB² + PC² = 3PQ² + k.
If A = (4,-4), B = (3,8), and C = (-1, 2), then find the constant k.

 Aug 9, 2024
 #2
avatar+1501 
0

Given points A=(4,4), B=(3,8), and C=(1,2), and a point Q such that for any point P in the plane, the following equation holds:

 

PA2+PB2+PC2=3PQ2+k

 

We need to find the constant k.

 

### Step 1: Write down the expression for the sum of squares of distances


Let P=(x,y) and Q=(xQ,yQ). The squared distances from P to the points A, B, and C are:

 

PA2=(x4)2+(y+4)2


PB2=(x3)2+(y8)2


PC2=(x+1)2+(y2)2

 

The sum of these squared distances is:

 

PA2+PB2+PC2=[(x4)2+(y+4)2]+[(x3)2+(y8)2]+[(x+1)2+(y2)2]

 

Expanding these expressions:

 

PA2=(x28x+16)+(y2+8y+16)


PB2=(x26x+9)+(y216y+64)


PC2=(x2+2x+1)+(y24y+4)

 

Adding them together:

 

PA2+PB2+PC2=[3x2+(8x6x+2x)+(16+9+1)]+[3y2+(8y16y4y)+(16+64+4)]

 

Simplifying:

 

PA2+PB2+PC2=3x212x+26+3y212y+84

 

Thus:

 

PA2+PB2+PC2=3(x24x+263)+3(y24y+28)

 

### Step 2: Express the right-hand side


The expression for 3PQ2 is:

 

3PQ2=3[(xxQ)2+(yyQ)2]=3[(x22xxQ+x2Q)+(y22yyQ+y2Q)]

 

Expanding:

 

3PQ2=3x26xxQ+3x2Q+3y26yyQ+3y2Q

 

### Step 3: Set up the equation


We equate PA2+PB2+PC2 with 3PQ2+k:

 

3x212x+110+3y212y+84=3x26xxQ+3x2Q+3y26yyQ+3y2Q+k

 

By comparing coefficients, we get:

 

12x=6xxQand12y=6yyQ

 

So:

 

xQ=2,yQ=2

 

Now, matching the constant terms:

 

110+84=3x2Q+3y2Q+k


194=3(22)+3(22)+k=12+12+k=24+k

 

Thus:

k=19424=170

 

### Final Answer:


The constant k is 170.

 Aug 10, 2024

2 Online Users

avatar
avatar