Points A, B, and C are given in the coordinate plane. There exists a point Q and a constant k such that for any point P,
PA² + PB² + PC² = 3PQ² + k.
If A = (4,-4), B = (3,8), and C = (-1, 2), then find the constant k.
Given points A=(4,−4), B=(3,8), and C=(−1,2), and a point Q such that for any point P in the plane, the following equation holds:
PA2+PB2+PC2=3PQ2+k
We need to find the constant k.
### Step 1: Write down the expression for the sum of squares of distances
Let P=(x,y) and Q=(xQ,yQ). The squared distances from P to the points A, B, and C are:
PA2=(x−4)2+(y+4)2
PB2=(x−3)2+(y−8)2
PC2=(x+1)2+(y−2)2
The sum of these squared distances is:
PA2+PB2+PC2=[(x−4)2+(y+4)2]+[(x−3)2+(y−8)2]+[(x+1)2+(y−2)2]
Expanding these expressions:
PA2=(x2−8x+16)+(y2+8y+16)
PB2=(x2−6x+9)+(y2−16y+64)
PC2=(x2+2x+1)+(y2−4y+4)
Adding them together:
PA2+PB2+PC2=[3x2+(−8x−6x+2x)+(16+9+1)]+[3y2+(8y−16y−4y)+(16+64+4)]
Simplifying:
PA2+PB2+PC2=3x2−12x+26+3y2−12y+84
Thus:
PA2+PB2+PC2=3(x2−4x+263)+3(y2−4y+28)
### Step 2: Express the right-hand side
The expression for 3PQ2 is:
3PQ2=3[(x−xQ)2+(y−yQ)2]=3[(x2−2xxQ+x2Q)+(y2−2yyQ+y2Q)]
Expanding:
3PQ2=3x2−6xxQ+3x2Q+3y2−6yyQ+3y2Q
### Step 3: Set up the equation
We equate PA2+PB2+PC2 with 3PQ2+k:
3x2−12x+110+3y2−12y+84=3x2−6xxQ+3x2Q+3y2−6yyQ+3y2Q+k
By comparing coefficients, we get:
−12x=−6xxQand−12y=−6yyQ
So:
xQ=2,yQ=2
Now, matching the constant terms:
110+84=3x2Q+3y2Q+k
194=3(22)+3(22)+k=12+12+k=24+k
Thus:
k=194−24=170
### Final Answer:
The constant k is 170.