+0  
 
0
218
2
avatar

How does this? sin^2 20 + sin^2 70 =   20 and 70 are in grade

Guest Jun 8, 2015

Best Answer 

 #2
avatar+91051 
+10

Draw a right angled triangles with angles 20 and 70 degrees.  

Convince yourself that sin70 = cos 20

 

Now 

$$\\sin^2 20 + sin^2 70 \\\\
=sin^2 20 + cos^2 20 \\\\
=1\\\\\\
remember\; the\; identity\\\\
\boxed{sin^2 \theta + cos^2 \theta=1}$$

Melody  Jun 9, 2015
Sort: 

2+0 Answers

 #1
avatar+14536 
+5

$${\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{20}}^\circ\right)}}^{\,{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{70}}^\circ\right)}}^{\,{\mathtt{2}}}\right) = {\mathtt{1}}$$

$${\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{20}}^\circ\right)}}^{\,{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{70}}^\circ\right)}}^{\,{\mathtt{2}}} = {\mathtt{1.000\: \!000\: \!000\: \!000\: \!398\: \!8}}$$

radix  Jun 8, 2015
 #2
avatar+91051 
+10
Best Answer

Draw a right angled triangles with angles 20 and 70 degrees.  

Convince yourself that sin70 = cos 20

 

Now 

$$\\sin^2 20 + sin^2 70 \\\\
=sin^2 20 + cos^2 20 \\\\
=1\\\\\\
remember\; the\; identity\\\\
\boxed{sin^2 \theta + cos^2 \theta=1}$$

Melody  Jun 9, 2015

7 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details