+0  
 
0
3950
2
avatar

How long does it take for Marks car to change to its velocity from 12 m/s to 25 m/s if the acceleration is 5 m/s2

 Jan 26, 2016

Best Answer 

 #1
avatar+33661 
+15

v = u + a*t   where v = final velocity (25m/s), u = initial velocity (12m/s), a = acceleration (5m/s2) and t = time (secs)

 

So t = (v - u)/a  

 

I'll leave you to fill in the numbers.

 Jan 26, 2016
 #1
avatar+33661 
+15
Best Answer

v = u + a*t   where v = final velocity (25m/s), u = initial velocity (12m/s), a = acceleration (5m/s2) and t = time (secs)

 

So t = (v - u)/a  

 

I'll leave you to fill in the numbers.

Alan Jan 26, 2016
 #2
avatar+26387 
+5

How long does it take for Marks car to change to its velocity from 12 m/s to 25 m/s if the acceleration is 5 m/s2

 

a = acceleration

v = velocity

t = time

 

\(\begin{array}{rcll} \boxed{~ \begin{array}{rcll} a &=& \frac{ \Delta v } { \Delta t } \end{array} ~}\\\\ \Delta v &=& 25\ \frac{m}{s} - 12\ \frac{m}{s} \\ a &=& 5\ \frac{m}{s^2} \\\\ \end{array}\\\\ \begin{array}{rcll} 5\ \frac{m}{s^2} &=& \frac{ 25\ \frac{m}{s} - 12\ \frac{m}{s} } { \Delta t } \\ 5\ \frac{m}{s^2} &=& \frac{ 13\ \frac{m}{s} } { \Delta t } \\ \Delta t &=& \frac{ 13\ \frac{m}{s} } { 5\ \frac{m}{s^2} } \\ \Delta t &=& \frac{ 13 } { 5 } \ s \\ \mathbf{ \Delta t } &\mathbf{=}& \mathbf{2.6 \ s }\\ \end{array}\)

 

laugh

 Jan 26, 2016
edited by heureka  Jan 26, 2016

2 Online Users

avatar
avatar