An expression is formed using the numbers 7, 16, 25, and 27 according to the following rules. $\bullet$ Each of the four numbers is used exactly once. $\bullet$ The four numbers may be used in any order. $\bullet$ Exactly three operations are used; each one is either $+$ or $\times$. $\bullet$ An unlimited number of parentheses may be used. No two distinct expressions have the same simplified value. The two expressions below are not distinct, and therefore must be counted as only one value. What is the greatest number of distinct values, including the one below, that can be obtained when building expressions following these rules? $(7+16+27) \times 25 = 25 \times (27+7+16)$

 Jul 27, 2020

There are 7 possible distinct values.

 Jul 27, 2020

I can already think of 8, and I know there's much more

Williamjwu8  Jul 27, 2020

21 Online Users