+0  
 
+1
234
1
avatar+211 

How many positive integers $n$ satisfy $127 \equiv 7 \pmod{n}$? $n=1$ is allowed.

 Apr 29, 2018
 #1
avatar+972 
+1

Hey RB!

 

If \(127 \equiv 7 \pmod{n}\), then n is a divisor of 127 - 7 = 120.

 

The prime factorization of 120 is \(2^3 \cdot 3 \cdot 5\)

 

which has \((3 + 1)(1 + 1)(1 + 1) = 16\) positive divisors.

 

Therefore, there are 16 possible values of n.

 

I hope this helps,

 

Gavin.

 Apr 30, 2018

21 Online Users

avatar
avatar
avatar