Hi MWizzard :))
The questions use the current year!
I am just going to copy Heureka's method :)
Given that xyz = 2016 and x, y and z are positive integers such that x < y < z, how many possible triples are there?
First you need to work out all the prime factors of 2016
\(2016=2^5*3^2*7\)
You can work out the third one of each trio yourself :)
1 | 1 | 2 | 2^4 *3^2 *7 | |
2 | 1 | 3 | ||
3 | 1 | 4 | ||
4 | 1 | 6 | ||
5 | 1 | 7 | ||
6 | 1 | 8 | ||
7 | 1 | 9 | ||
8 | 1 | 12 | ||
9 | 1 | 14 | ||
10 | 1 | 16 | ||
11 | 1 | 18 | ||
12 | 1 | 21 | ||
13 | 1 | 24 | 2*2*3*7 | |
14 | 1 | 27 | ||
15 | 1 | 28 | ||
16 | 1 | 32 | 3*3*7 | |
17 | 1 | 36 | ||
18 | 1 | 42 | 16*3=48 | |
19 | 2 | 3 | ||
20 | 2 | 4 | ||
21 | 2 | 3 | ||
22 | 2 | 7 | ||
23 | 2 | 8 | ||
24 | 2 | 9 | ||
25 | 2 | 12 | ||
26 | 2 | 14 | ||
27 | 2 | 16 | ||
28 | 2 | 18 | ||
29 | 2 | 21 | ||
30 | 2 | 24 | ||
31 | 2 | 28 | 9*4=36 | |
32 | 3 | 4 | ||
33 | 3 | 6 | ||
34 | 3 | 7 | ||
35 | 3 | 8 | ||
36 | 3 | 12 | ||
37 | 3 | 14 | ||
38 | 3 | 16 | ||
39 | 3 | 21 | ||
40 | 3 | 24 | 28 | |
41 | 4 | 6 | ||
42 | 4 | 7 | ||
43 | 4 | 8 | ||
44 | 4 | 9 | ||
45 | 4 | 12 | ||
46 | 4 | 14 | ||
47 | 4 | 21 | 24 | |
48 | 6 | 7 | ||
49 | 6 | 8 | ||
50 | 6 | 12 | ||
51 | 6 | 14 | ||
52 | 6 | 16 | 21 | |
53 | 7 | 8 | ||
54 | 7 | 9 | ||
55 | 7 | 12 | ||
56 | 7 | 16 | 18 | |
57 | 8 | 9 | ||
58 | 8 | 12 | ||
59 | 8 | 14 | 18 | |
60 | 9 | 14 | 16 last one | |
12 | 14 | no good | ||
There is probably a much faster way. But if there is no silly omissions that should be right
I found 60 ordered trios
Are x,y and z integers?
I will assume that they are positive integers
2012=2*2*504
so
x=1, y=4, z=504
or
x=2 y=2 z=504
The divisors of 2012 are 1, 2, 4, 503, 1006, 2012
Assuming that x, y and z don't have to be unique [ all different], we have
x y z
1 1 2012
1 2 1006
1 4 503
2 2 503
4 triplets ???
I think that's it [ could you check this, heureka???.....your always way better at this than I am....!!!]
How many triplets (x,y,z) are there if xyz = 2012 and x ≤ y ≤ z?
\(\begin{array}{|c|c|c|c|c|} \hline & x & y & z & x \le y \le z\\ \hline 1 & 1 & 1 & 2012 & \surd \\ 2 & 1 & 2 & 1006 & \surd \\ 3 & 1 & 4 & 503 & \surd \\ 4 & 1 & 503 & 4 & \\ 5 & 1 & 1006 & 2 & \\ 6 & 1 & 2012 & 1 & \\ 7 & 2 & 1 & 1006 & \\ 8 & 2 & 2 & 503 & \surd \\ 9 & 2 & 503 & 2 & \\ 10 & 2 & 1006 & 1 & \\ 11 & 4 & 1 & 503 & \\ 12 & 4 & 503 & 1 & \\ 13 & 503 & 1 & 4 & \\ 14 & 503 & 2 & 2 & \\ 15 & 503 & 4 & 1 & \\ 16 & 1006 & 1 & 2 & \\ 17 & 1006 & 2 & 1 & \\ 18 & 2012 & 1 & 1 & \\ \hline \end{array}\)
It's okay CPhill !
Thanks, heureka!!!!!....BTW .....I meant to type "you're" instead of "your"......doh !!!!!!
Help me in Math Olympiad!!!
The questions use the current year!
Given that xyz = 2016 and x, y and z are positive integers such that x < y < z, how many possible triples are there?
Hi MWizzard :))
The questions use the current year!
I am just going to copy Heureka's method :)
Given that xyz = 2016 and x, y and z are positive integers such that x < y < z, how many possible triples are there?
First you need to work out all the prime factors of 2016
\(2016=2^5*3^2*7\)
You can work out the third one of each trio yourself :)
1 | 1 | 2 | 2^4 *3^2 *7 | |
2 | 1 | 3 | ||
3 | 1 | 4 | ||
4 | 1 | 6 | ||
5 | 1 | 7 | ||
6 | 1 | 8 | ||
7 | 1 | 9 | ||
8 | 1 | 12 | ||
9 | 1 | 14 | ||
10 | 1 | 16 | ||
11 | 1 | 18 | ||
12 | 1 | 21 | ||
13 | 1 | 24 | 2*2*3*7 | |
14 | 1 | 27 | ||
15 | 1 | 28 | ||
16 | 1 | 32 | 3*3*7 | |
17 | 1 | 36 | ||
18 | 1 | 42 | 16*3=48 | |
19 | 2 | 3 | ||
20 | 2 | 4 | ||
21 | 2 | 3 | ||
22 | 2 | 7 | ||
23 | 2 | 8 | ||
24 | 2 | 9 | ||
25 | 2 | 12 | ||
26 | 2 | 14 | ||
27 | 2 | 16 | ||
28 | 2 | 18 | ||
29 | 2 | 21 | ||
30 | 2 | 24 | ||
31 | 2 | 28 | 9*4=36 | |
32 | 3 | 4 | ||
33 | 3 | 6 | ||
34 | 3 | 7 | ||
35 | 3 | 8 | ||
36 | 3 | 12 | ||
37 | 3 | 14 | ||
38 | 3 | 16 | ||
39 | 3 | 21 | ||
40 | 3 | 24 | 28 | |
41 | 4 | 6 | ||
42 | 4 | 7 | ||
43 | 4 | 8 | ||
44 | 4 | 9 | ||
45 | 4 | 12 | ||
46 | 4 | 14 | ||
47 | 4 | 21 | 24 | |
48 | 6 | 7 | ||
49 | 6 | 8 | ||
50 | 6 | 12 | ||
51 | 6 | 14 | ||
52 | 6 | 16 | 21 | |
53 | 7 | 8 | ||
54 | 7 | 9 | ||
55 | 7 | 12 | ||
56 | 7 | 16 | 18 | |
57 | 8 | 9 | ||
58 | 8 | 12 | ||
59 | 8 | 14 | 18 | |
60 | 9 | 14 | 16 last one | |
12 | 14 | no good | ||
There is probably a much faster way. But if there is no silly omissions that should be right
I found 60 ordered trios