+0  
 
0
177
2
avatar+2766 

How many two-digit positive integers are congruent to 1 (mod 3)?

tertre  Feb 7, 2018
 #1
avatar
+1

3C + 10, where C =0 to 29

3*0 + 10 mod 3 = 1

3*1 + 10 mos 3 = 1

3*2 + 10 mod 3 = 1.........and so on to C=29

3*29 + 10 mod 2 = 1 and so on . So, there are 30 2-digit positive integers that sarisfy the congruence.

Guest Feb 7, 2018
 #2
avatar+19832 
+3

How many two-digit positive integers are congruent to 1 (mod 3)?

 

\(\begin{array}{|rcll|} \hline \text{ $x \equiv 1 \pmod 3$ $\\$ or $ \\ x-1 = n\cdot 3 $ } \\ \hline \end{array} \)

 

\(\begin{array}{lrcll} \text{If $x = 99$} & 99-1 &=& n\cdot 3 \\ & 98 &=& n\cdot 3 \\ & n &=& \dfrac{98}{3} \\ & n &=& 32.7 \\ & \boxed{ n = 0\ldots 32 \qquad x = 1\ldots 99 } \\ \end{array} \)

 

\(\begin{array}{lrcll} \text{If $x = 9$} & 9-1 &=& m\cdot 3 \\ & 8 &=& m\cdot 3 \\ & m &=& \dfrac{8}{3} \\ & m &=& 2.7 \\ & \boxed{ m = 0\ldots 2 \qquad x = 1\ldots 9 } \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline x = 10\ldots 99 \\ n-m &=& 33 -3 = 30 \\ \hline \end{array} \)

 

30 two-digit positive integers are congruent to 1 (mod 3)

 

\(\begin{array}{|l|rcll|} \hline 1. & 10 \\ 2. & 13 \\ 3. & 16 \\ 4. & 19 \\ 5. & 22 \\ 6. & 25 \\ 7. & 28 \\ 8. & 31 \\ 9. & 34 \\ 10. & 37 \\ 11. & 40 \\ 12. & 43 \\ 13. & 46 \\ 14. & 49 \\ 15. & 52 \\ 16. & 55 \\ 17. & 58 \\ 18. & 61 \\ 19. & 64 \\ 20. & 67 \\ 21. & 70 \\ 22. & 73 \\ 23. & 76 \\ 24. & 79 \\ 25. & 82 \\ 26. & 85 \\ 27. & 88 \\ 28. & 91 \\ 29. & 94 \\ 30. & 97 \\ \hline \end{array} \)

 

laugh

heureka  Feb 7, 2018
edited by heureka  Feb 7, 2018

17 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.