+0  
 
+5
186
1
avatar

how to calculate x in steps?

 

\(\frac{pi}{4}= cos^-1 (\frac{2x^2}{1+x^4})\)

Guest Feb 22, 2017

Best Answer 

 #1
avatar+19603 
+10

how to calculate x in steps?

\(\frac{\pi}{4}= \cos^-1 \left(\frac{2x^2}{1+x^4} \right)\)

 

\(\begin{array}{|rcll|} \hline \frac{\pi}{4} &=& \cos^-1 \left(\frac{2x^2}{1+x^4} \right) \quad & | \quad \cos() \\ \cos( \frac{\pi}{4} ) &=& \cos(\cos^-1 \left(\frac{2x^2}{1+x^4} \right)) \\ \cos( \frac{\pi}{4} ) &=& \frac{2x^2}{1+x^4} \quad & | \quad \cos( \frac{\pi}{4} ) = \frac{1} {\sqrt{2}} \\ \frac{1} {\sqrt{2}} &=& \frac{2x^2}{1+x^4} \quad & | \quad \cdot (1+x^4) \\ \frac{1} {\sqrt{2}}\cdot (1+x^4) &=& 2x^2 \quad & | \quad \cdot \sqrt{2} \\ 1+x^4 &=& 2\cdot\sqrt{2}\cdot x^2 \quad & | \quad -2\cdot\sqrt{2}\cdot x^2 \\ x^4 -2\cdot\sqrt{2}\cdot x^2 + 1 &=& 0 \\\\ z^2 -2\cdot\sqrt{2}\cdot z + 1 &=& 0 \quad & | \quad z = x^2 \\ z &=& \frac{2\cdot\sqrt{2} \pm \sqrt{(-2\cdot\sqrt{2})^2-4\cdot 1 } } { 2 } \\ z &=& \frac{2\cdot\sqrt{2} \pm \sqrt{8-4 } } { 2 } \\ z &=& \frac{2\cdot\sqrt{2} \pm \sqrt{4 } } { 2 } \\ z &=& \frac{2\cdot\sqrt{2} \pm 2 } { 2 } \\ z &=& \sqrt{2} \pm 1 \quad & | \quad x = \pm\sqrt{z} \\ x &=& \pm\sqrt{ \sqrt{2} \pm 1} \\\\ x_1 &=& + \sqrt{ \sqrt{2} + 1} = 1.55377397403 \\ x_2 &=& + \sqrt{ \sqrt{2} - 1} = 0.64359425291 \\ x_3 &=& - \sqrt{ \sqrt{2} + 1} = -1.55377397403 \\ x_4 &=& - \sqrt{ \sqrt{2} - 1} = -0.64359425291\\ \hline \end{array}\)

 

laugh

heureka  Feb 22, 2017
 #1
avatar+19603 
+10
Best Answer

how to calculate x in steps?

\(\frac{\pi}{4}= \cos^-1 \left(\frac{2x^2}{1+x^4} \right)\)

 

\(\begin{array}{|rcll|} \hline \frac{\pi}{4} &=& \cos^-1 \left(\frac{2x^2}{1+x^4} \right) \quad & | \quad \cos() \\ \cos( \frac{\pi}{4} ) &=& \cos(\cos^-1 \left(\frac{2x^2}{1+x^4} \right)) \\ \cos( \frac{\pi}{4} ) &=& \frac{2x^2}{1+x^4} \quad & | \quad \cos( \frac{\pi}{4} ) = \frac{1} {\sqrt{2}} \\ \frac{1} {\sqrt{2}} &=& \frac{2x^2}{1+x^4} \quad & | \quad \cdot (1+x^4) \\ \frac{1} {\sqrt{2}}\cdot (1+x^4) &=& 2x^2 \quad & | \quad \cdot \sqrt{2} \\ 1+x^4 &=& 2\cdot\sqrt{2}\cdot x^2 \quad & | \quad -2\cdot\sqrt{2}\cdot x^2 \\ x^4 -2\cdot\sqrt{2}\cdot x^2 + 1 &=& 0 \\\\ z^2 -2\cdot\sqrt{2}\cdot z + 1 &=& 0 \quad & | \quad z = x^2 \\ z &=& \frac{2\cdot\sqrt{2} \pm \sqrt{(-2\cdot\sqrt{2})^2-4\cdot 1 } } { 2 } \\ z &=& \frac{2\cdot\sqrt{2} \pm \sqrt{8-4 } } { 2 } \\ z &=& \frac{2\cdot\sqrt{2} \pm \sqrt{4 } } { 2 } \\ z &=& \frac{2\cdot\sqrt{2} \pm 2 } { 2 } \\ z &=& \sqrt{2} \pm 1 \quad & | \quad x = \pm\sqrt{z} \\ x &=& \pm\sqrt{ \sqrt{2} \pm 1} \\\\ x_1 &=& + \sqrt{ \sqrt{2} + 1} = 1.55377397403 \\ x_2 &=& + \sqrt{ \sqrt{2} - 1} = 0.64359425291 \\ x_3 &=& - \sqrt{ \sqrt{2} + 1} = -1.55377397403 \\ x_4 &=& - \sqrt{ \sqrt{2} - 1} = -0.64359425291\\ \hline \end{array}\)

 

laugh

heureka  Feb 22, 2017

17 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.