+0  
 
0
467
3
avatar

$${\mathtt{2}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{i}$$

Guest Nov 17, 2014

Best Answer 

 #3
avatar+27044 
+10

Note that heureka's answer and mine are different ways of expressing the same thing because

$$e^{i\theta}=cos\theta+isin\theta$$

.

Alan  Nov 17, 2014
 #1
avatar+27044 
+10

rectangular form: x + iy

polar form: re

r = √(x2 + y2)

θ = tan-1(y/x)

 

$${\mathtt{r}} = {\sqrt{{{\mathtt{2}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{3}}}^{{\mathtt{2}}}}} \Rightarrow {\mathtt{r}} = {\mathtt{3.605\: \!551\: \!275\: \!463\: \!989\: \!3}}$$

$${\mathtt{theta}} = \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)} \Rightarrow {\mathtt{theta}} = {\mathtt{56.309\: \!932\: \!474\: \!02^{\circ}}}$$

.

Alan  Nov 17, 2014
 #2
avatar+20025 
+8

how to conert rectangle form 2+3i to polar form :

$$z = x + y i \quad | \quad z = 2 + 3i$$

polar: $$x = r*\cos{(\phi)} \quad and \quad y = r*\sin{(\phi)}$$

set into z = x + yi:  $$z = r*\cos{(\phi)}+ r*\sin{(\phi)}i = r \left[ \cos{(\phi)}+ \sin{(\phi)}i \right] = r \left[ \cos{(\phi)}+ i\sin{(\phi)} \right]$$

r:  $$r=\sqrt{x^2+y^2} \quad | \quad r = \sqrt{2^2+3^2} = \sqrt{4+9} = \sqrt{13}$$ 

$$\phi$$ : $$\phi = \tan^{-1}{ ( \frac{y}{x} )} \quad | \quad \phi = \tan^{-1}(\frac{3}{2}) = 56.3099324740\ensurement{^{\circ}}$$

z(polar): $$z=r \left[ \cos{(\phi)}+ i\sin{(\phi)} \right] \quad | \quad z = \sqrt{13} \left[ \cos{(56.3099324740\ensurement{^{\circ}})}+ i*\sin{(56.3099324740\ensurement{^{\circ}})} \right]$$

heureka  Nov 17, 2014
 #3
avatar+27044 
+10
Best Answer

Note that heureka's answer and mine are different ways of expressing the same thing because

$$e^{i\theta}=cos\theta+isin\theta$$

.

Alan  Nov 17, 2014

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.