+0  
 
0
507
2
avatar

how to convert polar coordinates to cartesian and vice versa?

Guest Sep 9, 2014

Best Answer 

 #2
avatar+20040 
+5

How to convert polar to cartesian and vice versa ?

I. polar to cartesian : $$\boxed{\begin{array}{rcl}
x=r*\cos{(\alpha)} \\
y=r*\sin{(\alpha)}
\end{array}
}$$

 

II. cartesian  to polar : $$r:
\begin{array}{rcl}
x^2+y^2&=&r^2\cos^2{(\alpha)}+r^2\sin^2{(\alpha)} \\
x^2+y^2&=& r^2(
\underbrace{
\sin^2{(\alpha)}+\cos^2{(\alpha)}
}_{=1} ) \\
x^2+y^2&=&r^2 \\
\end{array}
\boxed{r=\sqrt{x^2+y^2}}$$

$$\alpha:
\begin{array}{rcl}
\frac{y}{x}&=& \frac { r\sin{(\alpha)} } { r\cos{(\alpha)} }\\
\frac{y}{x}&=& \tan{(\alpha)}
\end{array}
\boxed{
\alpha=\tan^{-1}\left(
\frac{y}{x}
\right)
}$$

 

$$\begin{array}{rcll}
y>0 &and& x>0 & \quad \alpha \\
y>0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x>0 & \quad \alpha +360\ensurement{^{\circ}}\\
\hline
y=0 &and& x>0 & \quad \alpha = 0\ensurement{^{\circ}}\\
y>0 &and& x=0 & \quad \alpha = 90\ensurement{^{\circ}}\\
y=0 &and& x<0 & \quad \alpha = 180\ensurement{^{\circ}}\\
y<0 &and& x=0 & \quad \alpha = 270\ensurement{^{\circ}}
\end{array}$$

  y = 0   and  x = 0   $$\alpha$$  undefined!

heureka  Sep 9, 2014
 #1
avatar+27062 
+5

cartesian to polar:

$$r=\sqrt{x^2+y^2}$$

$$\theta=\tan^{-1}(\frac{y}{x})$$

 

polar to cartesian:

$$x=r\cos{\theta}$$

$$y=r\sin{\theta}$$

Alan  Sep 9, 2014
 #2
avatar+20040 
+5
Best Answer

How to convert polar to cartesian and vice versa ?

I. polar to cartesian : $$\boxed{\begin{array}{rcl}
x=r*\cos{(\alpha)} \\
y=r*\sin{(\alpha)}
\end{array}
}$$

 

II. cartesian  to polar : $$r:
\begin{array}{rcl}
x^2+y^2&=&r^2\cos^2{(\alpha)}+r^2\sin^2{(\alpha)} \\
x^2+y^2&=& r^2(
\underbrace{
\sin^2{(\alpha)}+\cos^2{(\alpha)}
}_{=1} ) \\
x^2+y^2&=&r^2 \\
\end{array}
\boxed{r=\sqrt{x^2+y^2}}$$

$$\alpha:
\begin{array}{rcl}
\frac{y}{x}&=& \frac { r\sin{(\alpha)} } { r\cos{(\alpha)} }\\
\frac{y}{x}&=& \tan{(\alpha)}
\end{array}
\boxed{
\alpha=\tan^{-1}\left(
\frac{y}{x}
\right)
}$$

 

$$\begin{array}{rcll}
y>0 &and& x>0 & \quad \alpha \\
y>0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x>0 & \quad \alpha +360\ensurement{^{\circ}}\\
\hline
y=0 &and& x>0 & \quad \alpha = 0\ensurement{^{\circ}}\\
y>0 &and& x=0 & \quad \alpha = 90\ensurement{^{\circ}}\\
y=0 &and& x<0 & \quad \alpha = 180\ensurement{^{\circ}}\\
y<0 &and& x=0 & \quad \alpha = 270\ensurement{^{\circ}}
\end{array}$$

  y = 0   and  x = 0   $$\alpha$$  undefined!

heureka  Sep 9, 2014

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.