+0  
 
0
579
2
avatar

how to convert polar coordinates to cartesian and vice versa?

 Sep 9, 2014

Best Answer 

 #2
avatar+20850 
+5

How to convert polar to cartesian and vice versa ?

I. polar to cartesian : $$\boxed{\begin{array}{rcl}
x=r*\cos{(\alpha)} \\
y=r*\sin{(\alpha)}
\end{array}
}$$

 

II. cartesian  to polar : $$r:
\begin{array}{rcl}
x^2+y^2&=&r^2\cos^2{(\alpha)}+r^2\sin^2{(\alpha)} \\
x^2+y^2&=& r^2(
\underbrace{
\sin^2{(\alpha)}+\cos^2{(\alpha)}
}_{=1} ) \\
x^2+y^2&=&r^2 \\
\end{array}
\boxed{r=\sqrt{x^2+y^2}}$$

$$\alpha:
\begin{array}{rcl}
\frac{y}{x}&=& \frac { r\sin{(\alpha)} } { r\cos{(\alpha)} }\\
\frac{y}{x}&=& \tan{(\alpha)}
\end{array}
\boxed{
\alpha=\tan^{-1}\left(
\frac{y}{x}
\right)
}$$

 

$$\begin{array}{rcll}
y>0 &and& x>0 & \quad \alpha \\
y>0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x>0 & \quad \alpha +360\ensurement{^{\circ}}\\
\hline
y=0 &and& x>0 & \quad \alpha = 0\ensurement{^{\circ}}\\
y>0 &and& x=0 & \quad \alpha = 90\ensurement{^{\circ}}\\
y=0 &and& x<0 & \quad \alpha = 180\ensurement{^{\circ}}\\
y<0 &and& x=0 & \quad \alpha = 270\ensurement{^{\circ}}
\end{array}$$

  y = 0   and  x = 0   $$\alpha$$  undefined!

 Sep 9, 2014
 #1
avatar+27377 
+5

cartesian to polar:

$$r=\sqrt{x^2+y^2}$$

$$\theta=\tan^{-1}(\frac{y}{x})$$

 

polar to cartesian:

$$x=r\cos{\theta}$$

$$y=r\sin{\theta}$$

.
 Sep 9, 2014
 #2
avatar+20850 
+5
Best Answer

How to convert polar to cartesian and vice versa ?

I. polar to cartesian : $$\boxed{\begin{array}{rcl}
x=r*\cos{(\alpha)} \\
y=r*\sin{(\alpha)}
\end{array}
}$$

 

II. cartesian  to polar : $$r:
\begin{array}{rcl}
x^2+y^2&=&r^2\cos^2{(\alpha)}+r^2\sin^2{(\alpha)} \\
x^2+y^2&=& r^2(
\underbrace{
\sin^2{(\alpha)}+\cos^2{(\alpha)}
}_{=1} ) \\
x^2+y^2&=&r^2 \\
\end{array}
\boxed{r=\sqrt{x^2+y^2}}$$

$$\alpha:
\begin{array}{rcl}
\frac{y}{x}&=& \frac { r\sin{(\alpha)} } { r\cos{(\alpha)} }\\
\frac{y}{x}&=& \tan{(\alpha)}
\end{array}
\boxed{
\alpha=\tan^{-1}\left(
\frac{y}{x}
\right)
}$$

 

$$\begin{array}{rcll}
y>0 &and& x>0 & \quad \alpha \\
y>0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x<0 & \quad \alpha +180\ensurement{^{\circ}}\\
y<0 &and& x>0 & \quad \alpha +360\ensurement{^{\circ}}\\
\hline
y=0 &and& x>0 & \quad \alpha = 0\ensurement{^{\circ}}\\
y>0 &and& x=0 & \quad \alpha = 90\ensurement{^{\circ}}\\
y=0 &and& x<0 & \quad \alpha = 180\ensurement{^{\circ}}\\
y<0 &and& x=0 & \quad \alpha = 270\ensurement{^{\circ}}
\end{array}$$

  y = 0   and  x = 0   $$\alpha$$  undefined!

heureka Sep 9, 2014

39 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.