How to do (25/4*sqrt(3)/(5+2.5sqrt(3)) this step by step?
I'm assuming that you have
(5+2.5sqrt(3))/(25/4*sqrt(3) ) =
5 / (25/4*sqrt(3) ) + 2.5sqrt (3) / (25/4 * sqrt (3) ) =
5 / (6.25 sqrt (3) ) + 2.5sqrt (3) / ( 6.25 * sqrt (3) ) =
5 / (6.25 sqrt (3) ) + 2.5 / ( 6.25 )
.8 / sqrt (3) + .4 = rationalize the denominator in the frist fraction
.8sqrt (3) / [ sqrt (3) * sqrt (3) ] + .4 =
.8 sqrt (3) / 3 + .4 = get a common denominator
[.8sqrt (3) + .4 (3)] / 3 =
[ .8 sqrt (3) + 1.2 ] / 3 =
.4 [ 2sqrt (3) + 3 ] / 3 =
(.4/3) [ 2sqrt (3) + 3 ] =
(4/30) [ 2sqrt (3) + 3 ] =
(2/15) [ 2sqrt (3) + 3 ] ≈ .861880