+0  
 
0
2274
2
avatar

how to evaluate the lim x-pi/4 (1-tan x)sec 2x?

Guest May 26, 2015

Best Answer 

 #1
avatar+27052 
+15

$$(1-\tan x)\sec{2x} \rightarrow \frac{1-\tan x}{\cos{2x}} \rightarrow \frac{1-\tan x}{\cos^2{x}-\sin^2{x}}\rightarrow \frac{1-\tan x}{(1-\tan^2{x})\cos^2{x}}\\\\\rightarrow \frac{1-\tan x}{(1-\tan{x})(1+\tan{x})\cos^2{x}}\rightarrow \frac{1}{(1+\tan{x})\cos^2{x}}$$

 

tan(pi/4) = 1  and cos(pi/4) = 1/√2 so:

 

$$\frac{1}{(1+\tan{\frac{\pi}{4}})\cos^2{\frac{\pi}{4}}}=\frac{1}{2\times \frac{1}{2}}=1$$

 

.

Alan  May 26, 2015
 #1
avatar+27052 
+15
Best Answer

$$(1-\tan x)\sec{2x} \rightarrow \frac{1-\tan x}{\cos{2x}} \rightarrow \frac{1-\tan x}{\cos^2{x}-\sin^2{x}}\rightarrow \frac{1-\tan x}{(1-\tan^2{x})\cos^2{x}}\\\\\rightarrow \frac{1-\tan x}{(1-\tan{x})(1+\tan{x})\cos^2{x}}\rightarrow \frac{1}{(1+\tan{x})\cos^2{x}}$$

 

tan(pi/4) = 1  and cos(pi/4) = 1/√2 so:

 

$$\frac{1}{(1+\tan{\frac{\pi}{4}})\cos^2{\frac{\pi}{4}}}=\frac{1}{2\times \frac{1}{2}}=1$$

 

.

Alan  May 26, 2015
 #2
avatar+93677 
+10

Thanks Alan,

I doubt I would have got that on my own EVEN if I had been a good enother forensic mathematician to work out the question in the first place.   LOL

 

I put this into the Great Answers to Learn from Sticky Thread :)

Melody  May 27, 2015

6 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.