+0  
 
0
242
1
avatar

how to find a polar form of v in v=4-4i?

Guest Jun 2, 2015

Best Answer 

 #1
avatar+78618 
+10

The polar form can be written as....  z = r (cos Θ + i*sinΘ )

 

r = √[(4)^2 + (-4)^2]  = √[16 + 16] = 4√2

 

And  Θ   =  tan-1(-4/4) = tan-1(-1)  = -pi/4    ...so we have

 

z = 4√2 ( cos (-pi/4) +  i*sin (-pi/4) )  

 

..... note that this is the principal value......any angle of the form -pi/4  +  2pi (n)  is also possible, where n is an integer

 

 

CPhill  Jun 2, 2015
Sort: 

1+0 Answers

 #1
avatar+78618 
+10
Best Answer

The polar form can be written as....  z = r (cos Θ + i*sinΘ )

 

r = √[(4)^2 + (-4)^2]  = √[16 + 16] = 4√2

 

And  Θ   =  tan-1(-4/4) = tan-1(-1)  = -pi/4    ...so we have

 

z = 4√2 ( cos (-pi/4) +  i*sin (-pi/4) )  

 

..... note that this is the principal value......any angle of the form -pi/4  +  2pi (n)  is also possible, where n is an integer

 

 

CPhill  Jun 2, 2015

26 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details