+0  
 
0
505
1
avatar

how to find a polar form of v in v=4-4i?

Guest Jun 2, 2015

Best Answer 

 #1
avatar+92808 
+10

The polar form can be written as....  z = r (cos Θ + i*sinΘ )

 

r = √[(4)^2 + (-4)^2]  = √[16 + 16] = 4√2

 

And  Θ   =  tan-1(-4/4) = tan-1(-1)  = -pi/4    ...so we have

 

z = 4√2 ( cos (-pi/4) +  i*sin (-pi/4) )  

 

..... note that this is the principal value......any angle of the form -pi/4  +  2pi (n)  is also possible, where n is an integer

 

 

CPhill  Jun 2, 2015
 #1
avatar+92808 
+10
Best Answer

The polar form can be written as....  z = r (cos Θ + i*sinΘ )

 

r = √[(4)^2 + (-4)^2]  = √[16 + 16] = 4√2

 

And  Θ   =  tan-1(-4/4) = tan-1(-1)  = -pi/4    ...so we have

 

z = 4√2 ( cos (-pi/4) +  i*sin (-pi/4) )  

 

..... note that this is the principal value......any angle of the form -pi/4  +  2pi (n)  is also possible, where n is an integer

 

 

CPhill  Jun 2, 2015

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.