+0  
 
0
383
1
avatar

How to find integral of logarithmic functions

Guest Nov 19, 2014

Best Answer 

 #1
avatar+20025 
+5

How to find integral of logarithmic functions:

$$\boxed{\int{log_a(x) \ dx} = x * log_a(x) - \dfrac{x}{\ln{(a)}} + c\ }$$

 

 

 

$$\begin{array}{lcrclcrccccl}
(u & * & v)' & = & u' &*& v & + & u &*& v' &\\
(x & * & log_a{(x)})' & = & 1 & *& log_a{(x)} & + & x & * & \dfrac{1}{x*\ln{(a)}} & \quad | \quad \textcolor[rgb]{1,0,0}
{
( log_a{(x)} )' = \dfrac{1}{x*\ln{(a)}}
}\\ \\
(x & * & log_a{(x)})' & = &&& log_a{(x)} & + &&& \dfrac{1}{\ln{(a)}} & \quad | \quad \int{}\ dx \\ \\
x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{1}{\ln{(a)}} \int{\ dx} & \\ \\
x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{x}{\ln{(a)}} & \\ \\
\int{ log_a{(x)} \ dx} & & & = &&& x * log_a{(x)} & - &&& \dfrac{x}{\ln{(a)}} &
\end{array}$$

Example:

$$basic \ a = e: \\
\int{ log_e{(x)} \ dx} =x * log_e{(x)} - \dfrac{x}{\ln{(e)}} \\
\int{ \ln{(x)} \ dx} =x * ln{(x)} - \dfrac{x} {1} \\
\int{ \ln{(x)} \ dx} =x * ln{(x)} - x\\$$

$$basic \ a = 10: \\
\int{ log_{10}{(x)} \ dx} =x * log_{10}{(x)} - \dfrac{x}{\ln{(10)}} \\
\int{ \log{(x)} \ dx} =x * log{(x)} - \dfrac{x}{\ln{(10)}}$$

heureka  Nov 19, 2014
 #1
avatar+20025 
+5
Best Answer

How to find integral of logarithmic functions:

$$\boxed{\int{log_a(x) \ dx} = x * log_a(x) - \dfrac{x}{\ln{(a)}} + c\ }$$

 

 

 

$$\begin{array}{lcrclcrccccl}
(u & * & v)' & = & u' &*& v & + & u &*& v' &\\
(x & * & log_a{(x)})' & = & 1 & *& log_a{(x)} & + & x & * & \dfrac{1}{x*\ln{(a)}} & \quad | \quad \textcolor[rgb]{1,0,0}
{
( log_a{(x)} )' = \dfrac{1}{x*\ln{(a)}}
}\\ \\
(x & * & log_a{(x)})' & = &&& log_a{(x)} & + &&& \dfrac{1}{\ln{(a)}} & \quad | \quad \int{}\ dx \\ \\
x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{1}{\ln{(a)}} \int{\ dx} & \\ \\
x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{x}{\ln{(a)}} & \\ \\
\int{ log_a{(x)} \ dx} & & & = &&& x * log_a{(x)} & - &&& \dfrac{x}{\ln{(a)}} &
\end{array}$$

Example:

$$basic \ a = e: \\
\int{ log_e{(x)} \ dx} =x * log_e{(x)} - \dfrac{x}{\ln{(e)}} \\
\int{ \ln{(x)} \ dx} =x * ln{(x)} - \dfrac{x} {1} \\
\int{ \ln{(x)} \ dx} =x * ln{(x)} - x\\$$

$$basic \ a = 10: \\
\int{ log_{10}{(x)} \ dx} =x * log_{10}{(x)} - \dfrac{x}{\ln{(10)}} \\
\int{ \log{(x)} \ dx} =x * log{(x)} - \dfrac{x}{\ln{(10)}}$$

heureka  Nov 19, 2014

25 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.