How to find integral of logarithmic functions:
∫loga(x) dx=x∗loga(x)−xln(a)+c
(u∗v)′=u′∗v+u∗v′(x∗loga(x))′=1∗loga(x)+x∗1x∗ln(a)|(loga(x))′=1x∗ln(a)(x∗loga(x))′=loga(x)+1ln(a)|∫ dxx∗loga(x)=∫loga(x) dx+1ln(a)∫ dxx∗loga(x)=∫loga(x) dx+xln(a)∫loga(x) dx=x∗loga(x)−xln(a)
Example:
basic a=e:∫loge(x) dx=x∗loge(x)−xln(e)∫ln(x) dx=x∗ln(x)−x1∫ln(x) dx=x∗ln(x)−x
basic a=10:∫log10(x) dx=x∗log10(x)−xln(10)∫log(x) dx=x∗log(x)−xln(10)
How to find integral of logarithmic functions:
∫loga(x) dx=x∗loga(x)−xln(a)+c
(u∗v)′=u′∗v+u∗v′(x∗loga(x))′=1∗loga(x)+x∗1x∗ln(a)|(loga(x))′=1x∗ln(a)(x∗loga(x))′=loga(x)+1ln(a)|∫ dxx∗loga(x)=∫loga(x) dx+1ln(a)∫ dxx∗loga(x)=∫loga(x) dx+xln(a)∫loga(x) dx=x∗loga(x)−xln(a)
Example:
basic a=e:∫loge(x) dx=x∗loge(x)−xln(e)∫ln(x) dx=x∗ln(x)−x1∫ln(x) dx=x∗ln(x)−x
basic a=10:∫log10(x) dx=x∗log10(x)−xln(10)∫log(x) dx=x∗log(x)−xln(10)