+0

# how to find x in the question Sinh(x-3)=1 even if i expand it into e terms i cant seem to get it

0
427
1

how to find x in the question Sinh(x-3)=1 even if i expand it into e terms i cant seem to get it

Guest Apr 23, 2015

#1
+19207
+10

How to find x in the question Sinh(x-3)=1 even if i expand it into e terms i cant seem to get it

I.

$$\small{\text{  \begin{array}{rcl} \sinh{(x-3)} &=& 1 \quad | \quad \sinh^{-1} \\ x-3 &=& \sinh^{-1}(1) \\ x &=& 3 + \sinh^{-1}(1) \\ x &=& 3 + 0.88137358702\\ x &=& 3.88137358702\\ \end{array}  }}$$

II.

$$\boxed{ \small{\text{  \sinh(x)=\frac{1}{2}\cdot \left( e^x - e^{-x}\right) \qquad \sinh(x-3)=\frac{1}{2}\cdot \left( e^{x-3} - e^{-(x-3)}\right)  }}}$$

$$\small{\text{ \begin{array}{rcl} \sinh(x-3) &=& 1\\ \frac{1}{2}\cdot \left( e^{x-3} - e^{-(x-3)}\right) &=& 1\\ e^{x-3} - e^{-(x-3)} &=& 2 \\ e^{x-3} - \frac{1}{e^{x-3}} &=& 2 \quad | \quad u = e^{x-3}\\ u-\frac{1}{u} &=& 2 \quad | \quad \cdot u\\ u^2-1 &=& 2\cdot u \\ u^2 -2\cdot u - 1 &=& 0 \\ u_{1,2} &=& \frac{ 2\pm \sqrt{4-4\cdot(-1) } }{2}\\ u_{1,2} &=& \frac{ 2\pm \sqrt{2\cdot4 } }{2}\\ u_{1,2} &=& \frac{ 2\pm 2\cdot\sqrt{ 2 } }{2}\\ u_{1,2} &=& 1\pm \sqrt{ 2 }\\ \end{array} }}$$

$$\small{\text{ \begin{array}{rcll} u &=& e^{x-3} \quad & | \quad \ln\\ \ln(u) &=& (x-3) \cdot \ln(e) \quad & | \quad \ln(e) = 1 \\ \ln(u) &=& x-3 \\ \boxed{x = 3 + \ln(u)} \end{array}  }}$$

$$\small{\text{ \begin{array}{rcl|rcl} u_1 &=& 1+\sqrt{2} \quad & \quad u_2 &=& 1-\sqrt{2}\\ x_1 &=& 3 + \ln(u_1) \quad & \quad x_2 &=&3 + \ln(u_2) \\ x_1 &=& 3 + \ln(1+\sqrt(2)) \quad & \quad x_2 &=&3 + \ln(\underbrace{1-\sqrt(2)}_{<0\text{ no solution!}}) \\ x &=& 3 + \ln(1+\sqrt(2)) \\ x &=& 3 + \ln( 2.41421356237 ) \\ x &=& 3 + 0.88137358702\\ x &=& 3.88137358702\\ \end{array}  }}$$

heureka  Apr 23, 2015
Sort:

#1
+19207
+10

How to find x in the question Sinh(x-3)=1 even if i expand it into e terms i cant seem to get it

I.

$$\small{\text{  \begin{array}{rcl} \sinh{(x-3)} &=& 1 \quad | \quad \sinh^{-1} \\ x-3 &=& \sinh^{-1}(1) \\ x &=& 3 + \sinh^{-1}(1) \\ x &=& 3 + 0.88137358702\\ x &=& 3.88137358702\\ \end{array}  }}$$

II.

$$\boxed{ \small{\text{  \sinh(x)=\frac{1}{2}\cdot \left( e^x - e^{-x}\right) \qquad \sinh(x-3)=\frac{1}{2}\cdot \left( e^{x-3} - e^{-(x-3)}\right)  }}}$$

$$\small{\text{ \begin{array}{rcl} \sinh(x-3) &=& 1\\ \frac{1}{2}\cdot \left( e^{x-3} - e^{-(x-3)}\right) &=& 1\\ e^{x-3} - e^{-(x-3)} &=& 2 \\ e^{x-3} - \frac{1}{e^{x-3}} &=& 2 \quad | \quad u = e^{x-3}\\ u-\frac{1}{u} &=& 2 \quad | \quad \cdot u\\ u^2-1 &=& 2\cdot u \\ u^2 -2\cdot u - 1 &=& 0 \\ u_{1,2} &=& \frac{ 2\pm \sqrt{4-4\cdot(-1) } }{2}\\ u_{1,2} &=& \frac{ 2\pm \sqrt{2\cdot4 } }{2}\\ u_{1,2} &=& \frac{ 2\pm 2\cdot\sqrt{ 2 } }{2}\\ u_{1,2} &=& 1\pm \sqrt{ 2 }\\ \end{array} }}$$

$$\small{\text{ \begin{array}{rcll} u &=& e^{x-3} \quad & | \quad \ln\\ \ln(u) &=& (x-3) \cdot \ln(e) \quad & | \quad \ln(e) = 1 \\ \ln(u) &=& x-3 \\ \boxed{x = 3 + \ln(u)} \end{array}  }}$$

$$\small{\text{ \begin{array}{rcl|rcl} u_1 &=& 1+\sqrt{2} \quad & \quad u_2 &=& 1-\sqrt{2}\\ x_1 &=& 3 + \ln(u_1) \quad & \quad x_2 &=&3 + \ln(u_2) \\ x_1 &=& 3 + \ln(1+\sqrt(2)) \quad & \quad x_2 &=&3 + \ln(\underbrace{1-\sqrt(2)}_{<0\text{ no solution!}}) \\ x &=& 3 + \ln(1+\sqrt(2)) \\ x &=& 3 + \ln( 2.41421356237 ) \\ x &=& 3 + 0.88137358702\\ x &=& 3.88137358702\\ \end{array}  }}$$

heureka  Apr 23, 2015

### 32 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details