+0  
 
0
644
4
avatar

how to solve this

$$\lim_{\frac{sin(a+x) - sin(a-x) }{x}}

x\Rightarrow0$$

math trigonometry
 Aug 25, 2014

Best Answer 

 #3
avatar+27396 
+5

sin(a+x) expansion

.
 Aug 25, 2014
 #1
avatar+27396 
+5

Expand sin(a+x) as a series in x:  

sin(a+x) = sin(a) + x*cos(a) + higher order terms involving multiples of x.

 

Similarly:

sin(a-x) = sin(x) - x*cos(a) + higher order terms

 

Therefore, sin(a+x) - sin(a-x) = 2x*cos(a) + higher order terms

 

(sin(a+x) - sin(a-x))/x = 2cos(a) + higher order terms.

 

The higher order terms all contain multiples of x, so when x goes to zero, these go to zero and we are left with:

$$\lim_{x \rightarrow 0}\frac{\sin(a+x)-\sin(a-x)}{x}=2\cos(a)$$

.
 Aug 25, 2014
 #2
avatar+95375 
0

I do not know this expansion Alan.  

 Aug 25, 2014
 #3
avatar+27396 
+5
Best Answer

sin(a+x) expansion

Alan Aug 25, 2014
 #4
avatar+95375 
0

Thanks Alan. 

 Aug 25, 2014

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.