+0  
 
0
33
1
avatar

Let A be an invertible matrix such that \(\mathbf{A} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)

and calculate \(\mathbf{A}^{-1} \begin{pmatrix} 2 \\ 2 \end{pmatrix}\)  if this expression is uniquely determined and defined.

 Feb 26, 2019
 #1
avatar+4404 
+2

\(A \begin{pmatrix}1\\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\end{pmatrix}\\ 2A\begin{pmatrix}1\\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2\end{pmatrix}\\ A^{-1} \begin{pmatrix} 2 \\ 2\end{pmatrix} = 2 A^{-1}A\begin{pmatrix}1\\ 2 \end{pmatrix} =\begin{pmatrix}2\\4\end{pmatrix}\)

.
 Feb 26, 2019

31 Online Users

avatar