We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
193
1
avatar

Let A be an invertible matrix such that \(\mathbf{A} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}\)

and calculate \(\mathbf{A}^{-1} \begin{pmatrix} 2 \\ 2 \end{pmatrix}\)  if this expression is uniquely determined and defined.

 Feb 26, 2019
 #1
avatar+6045 
+2

\(A \begin{pmatrix}1\\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\end{pmatrix}\\ 2A\begin{pmatrix}1\\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2\end{pmatrix}\\ A^{-1} \begin{pmatrix} 2 \\ 2\end{pmatrix} = 2 A^{-1}A\begin{pmatrix}1\\ 2 \end{pmatrix} =\begin{pmatrix}2\\4\end{pmatrix}\)

.
 Feb 26, 2019

30 Online Users

avatar
avatar