1. (csc^2(x) - cot^2(x)) / (sin(-x)cot(x)
Remember that 1 + cot^2 (x) = csc^2 (x)
So csc^2 (x) - cot^2(x) = 1
Also sin (-x) = - sin (x)
So we have
1 / [ - sin (x) (cos (x) / sin (x) ] =
1 / (-cos (x) ) = - sec (x)
2. sin ^2 (x)cos^2(x) - cos^2(x) =
(1 - cos^2(x) ) (cos^2 (x) ) - cos^2(x)
cos^2(x) - cos^4 (x) - cos^2(x)
-cos^4(x)