+0  
 
0
117
1
avatar

How would I be able to continue this root test?

 

I was originally solving for 

 

\(\sum_{n=1}^{infinity}(((-1)^n-15/n)^n)^2\)

 

I am being instructed to use the root test so I set up the following:

 

\(\lim_{n\rightarrow infinity}\)\(((\sqrt[n]{|(-1)^n(1-(15/n)|})^n)^2\)

 

However I'm not sure if I can cancel out anything here. Any help?

Guest Apr 18, 2017
Sort: 

1+0 Answers

 #1
avatar+308 
0

\(\lim_{n\rightarrow infinity}{{(\sqrt[n]{|{(-1)}^{n}*(1-(\frac{15}{n}))|})}^{n}}^{2}= \lim_{n\rightarrow infinity}{|{(-1)}^{n}*(1-(\frac{15}{n}))|}^{2}=(\lim_{n\rightarrow infinity}{|{(-1)}^{n}*(1-(\frac{15}{n}))|})^2=1^2=1.\)

Ehrlich  Apr 18, 2017

3 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details