+0  
 
0
1214
1
avatar

How would I be able to continue this root test?

 

I was originally solving for 

 

\(\sum_{n=1}^{infinity}(((-1)^n-15/n)^n)^2\)

 

I am being instructed to use the root test so I set up the following:

 

\(\lim_{n\rightarrow infinity}\)\(((\sqrt[n]{|(-1)^n(1-(15/n)|})^n)^2\)

 

However I'm not sure if I can cancel out anything here. Any help?

 Apr 18, 2017
 #1
avatar+312 
0

\(\lim_{n\rightarrow infinity}{{(\sqrt[n]{|{(-1)}^{n}*(1-(\frac{15}{n}))|})}^{n}}^{2}= \lim_{n\rightarrow infinity}{|{(-1)}^{n}*(1-(\frac{15}{n}))|}^{2}=(\lim_{n\rightarrow infinity}{|{(-1)}^{n}*(1-(\frac{15}{n}))|})^2=1^2=1.\)

.
 Apr 18, 2017

1 Online Users

avatar