+0  
 
0
238
5
avatar

How would you calculate the time it would take to drain down a cyclinder that is 250mm diameter and 10 meters long with an orifice .025mm. Just using atmospheric pressure. Then I would like to know how much of an increase in flow would i get if I introduce some extra pressure. i.e compressed air of 2 bar. Thank you.

physics
Guest May 26, 2015

Best Answer 

 #3
avatar+26329 
+15

The corresponding expression for a 2 bar applied pressure is:

 

$$\tau=\frac{\sqrt2A}{ag}(\sqrt{\frac{\Delta p}{\rho}+gh_0}-\sqrt{\frac{\Delta p}{\rho}})$$

 

Δp = 2 - 1 = 1 bar = 10^5 N/m^2  assuming 1 atmosphere = 1 bar

Assuming the liquid is water with a density of 1000 kg/m^3 then:

 

$${\mathtt{time}} = {\frac{\left({\frac{{\sqrt{{\mathtt{2}}}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{8}}}}{{\mathtt{9.8}}}}\right){\mathtt{\,\times\,}}\left({\sqrt{{\frac{{{\mathtt{10}}}^{{\mathtt{5}}}}{{\mathtt{1\,000}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9.8}}{\mathtt{\,\times\,}}{\mathtt{10}}}}{\mathtt{\,-\,}}{\sqrt{{\frac{{{\mathtt{10}}}^{{\mathtt{5}}}}{{\mathtt{1\,000}}}}}}\right)}{\left({\mathtt{3\,600}}{\mathtt{\,\times\,}}{\mathtt{24}}{\mathtt{\,\times\,}}{\mathtt{365}}\right)}} \Rightarrow {\mathtt{time}} = {\mathtt{1.862\: \!986\: \!880\: \!688\: \!817\: \!1}}$$

 

time ≈ 1.9 years

.

Alan  May 28, 2015
Sort: 

5+0 Answers

 #1
avatar+26329 
+10

Tank drain 1

 

Tank drain 2

My expression for τ above is incorrect.  It should be:

 

$$\tau=\frac{A}{a}\sqrt{\frac{2h_0}{g}}$$

Alan  May 27, 2015
 #2
avatar+26329 
+15

A = pi*(0.25/2)^2  m^2

a = pi*(0.000025/2)^2  m^2

A/a = 10^8

g = 9.8 m/s^2

h0 = 10 m

so

$${\mathtt{time}} = {\frac{{{\mathtt{10}}}^{{\mathtt{8}}}{\mathtt{\,\times\,}}{\sqrt{{\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{10}}}{{\mathtt{9.8}}}}}}}{\left({\mathtt{3\,600}}{\mathtt{\,\times\,}}{\mathtt{24}}{\mathtt{\,\times\,}}{\mathtt{365}}\right)}} \Rightarrow {\mathtt{time}} = {\mathtt{4.529\: \!970\: \!283\: \!394\: \!941}}$$

time ≈ 4.5 years

.

Alan  May 28, 2015
 #3
avatar+26329 
+15
Best Answer

The corresponding expression for a 2 bar applied pressure is:

 

$$\tau=\frac{\sqrt2A}{ag}(\sqrt{\frac{\Delta p}{\rho}+gh_0}-\sqrt{\frac{\Delta p}{\rho}})$$

 

Δp = 2 - 1 = 1 bar = 10^5 N/m^2  assuming 1 atmosphere = 1 bar

Assuming the liquid is water with a density of 1000 kg/m^3 then:

 

$${\mathtt{time}} = {\frac{\left({\frac{{\sqrt{{\mathtt{2}}}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{8}}}}{{\mathtt{9.8}}}}\right){\mathtt{\,\times\,}}\left({\sqrt{{\frac{{{\mathtt{10}}}^{{\mathtt{5}}}}{{\mathtt{1\,000}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9.8}}{\mathtt{\,\times\,}}{\mathtt{10}}}}{\mathtt{\,-\,}}{\sqrt{{\frac{{{\mathtt{10}}}^{{\mathtt{5}}}}{{\mathtt{1\,000}}}}}}\right)}{\left({\mathtt{3\,600}}{\mathtt{\,\times\,}}{\mathtt{24}}{\mathtt{\,\times\,}}{\mathtt{365}}\right)}} \Rightarrow {\mathtt{time}} = {\mathtt{1.862\: \!986\: \!880\: \!688\: \!817\: \!1}}$$

 

time ≈ 1.9 years

.

Alan  May 28, 2015
 #4
avatar+91051 
0

Thank you Alan :)

Melody  May 28, 2015
 #5
avatar
+5

Thats brilliant. Thanks Alan. Very much appreciated.

Guest May 28, 2015

2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details