Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1290
5
avatar

How would you calculate the time it would take to drain down a cyclinder that is 250mm diameter and 10 meters long with an orifice .025mm. Just using atmospheric pressure. Then I would like to know how much of an increase in flow would i get if I introduce some extra pressure. i.e compressed air of 2 bar. Thank you.

physics
 May 26, 2015

Best Answer 

 #3
avatar+33658 
+15

The corresponding expression for a 2 bar applied pressure is:

 

τ=2Aag(Δpρ+gh0Δpρ)

 

Δp = 2 - 1 = 1 bar = 10^5 N/m^2  assuming 1 atmosphere = 1 bar

Assuming the liquid is water with a density of 1000 kg/m^3 then:

 

time=(2×1089.8)×(1051000+9.8×101051000)(3600×24×365)time=1.8629868806888171

 

time ≈ 1.9 years

.

 May 28, 2015
 #1
avatar+33658 
+10

Tank drain 1

 

Tank drain 2

My expression for τ above is incorrect.  It should be:

 

τ=Aa2h0g

 May 27, 2015
 #2
avatar+33658 
+15

A = pi*(0.25/2)^2  m^2

a = pi*(0.000025/2)^2  m^2

A/a = 10^8

g = 9.8 m/s^2

h0 = 10 m

so

time=108×2×109.8(3600×24×365)time=4.529970283394941

time ≈ 4.5 years

.

 May 28, 2015
 #3
avatar+33658 
+15
Best Answer

The corresponding expression for a 2 bar applied pressure is:

 

τ=2Aag(Δpρ+gh0Δpρ)

 

Δp = 2 - 1 = 1 bar = 10^5 N/m^2  assuming 1 atmosphere = 1 bar

Assuming the liquid is water with a density of 1000 kg/m^3 then:

 

time=(2×1089.8)×(1051000+9.8×101051000)(3600×24×365)time=1.8629868806888171

 

time ≈ 1.9 years

.

Alan May 28, 2015
 #4
avatar+118703 
0

Thank you Alan :)

 May 28, 2015
 #5
avatar
+5

Thats brilliant. Thanks Alan. Very much appreciated.

 May 28, 2015

3 Online Users

avatar
avatar