\({|x|} = x^2 + x - 3\) and how would you solve it?

Guest May 6, 2018
edited by Guest  May 6, 2018

To solve the equation for x....


\(|x|=x^2+x-3\\~\\ x=\pm(x^2+x-3)\\~\\ \begin{array}\ x=+(x^2+x-3)&\qquad\text{or}\qquad& x=-(x^2+x-3)\\~\\ x=x^2+x-3&&x=-x^2-x+3\\~\\ 0=x^2-3&&0=-x^2-2x+3\\~\\ 3=x^2&&x^2+2x-3=0\\~\\ \pm\sqrt3=x&&(x+3)(x-1)=0\\~\\ x=\sqrt3\quad\text{or}\quad x=-\sqrt3&\qquad\text{or}& x=-3\quad\text{or}\quad x=1 \end{array} \)


Now we need to test each possible solution to see if it makes the given equation true:


\(|\sqrt3|\,\stackrel?=\,\sqrt3^2+\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,3+\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,\sqrt3\)


Yes, so  \(x=\sqrt3\)  is a solution.


\(|-\sqrt3|\,\stackrel?=\,(-\sqrt3)^2-\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,3-\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,-\sqrt3 \)


No, so  \(x=-\sqrt3\)  is not a solution.


\(|-3|\,\stackrel?=\,(-3)^2-3-3\\~\\ 3\,\stackrel?=\,9-3-3\\~\\ 3\,\stackrel?=\,3\)


Yes, so  \(x=-3\)  is a solution.


\(|1|\,\stackrel?=\,1^2+1-3\\~\\ 1\,\stackrel?=\,1+1-3\\~\\ 1\,\stackrel?=\,-1\)


No, so  \(x=1\)  is not a solution.


So the solutions are  \(x=\sqrt3\)  and  \(x=-3\)  .

hectictar  May 6, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.