+0  
 
0
36
1
avatar

\({|x|} = x^2 + x - 3\) and how would you solve it?

Guest May 6, 2018
edited by Guest  May 6, 2018
Sort: 

1+0 Answers

 #1
avatar+7046 
+1

To solve the equation for x....

 

\(|x|=x^2+x-3\\~\\ x=\pm(x^2+x-3)\\~\\ \begin{array}\ x=+(x^2+x-3)&\qquad\text{or}\qquad& x=-(x^2+x-3)\\~\\ x=x^2+x-3&&x=-x^2-x+3\\~\\ 0=x^2-3&&0=-x^2-2x+3\\~\\ 3=x^2&&x^2+2x-3=0\\~\\ \pm\sqrt3=x&&(x+3)(x-1)=0\\~\\ x=\sqrt3\quad\text{or}\quad x=-\sqrt3&\qquad\text{or}& x=-3\quad\text{or}\quad x=1 \end{array} \)

 

Now we need to test each possible solution to see if it makes the given equation true:

 

\(|\sqrt3|\,\stackrel?=\,\sqrt3^2+\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,3+\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,\sqrt3\)

 

Yes, so  \(x=\sqrt3\)  is a solution.

 

\(|-\sqrt3|\,\stackrel?=\,(-\sqrt3)^2-\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,3-\sqrt3-3\\~\\ \sqrt3\,\stackrel?=\,-\sqrt3 \)

 

No, so  \(x=-\sqrt3\)  is not a solution.

 

\(|-3|\,\stackrel?=\,(-3)^2-3-3\\~\\ 3\,\stackrel?=\,9-3-3\\~\\ 3\,\stackrel?=\,3\)

 

Yes, so  \(x=-3\)  is a solution.

 

\(|1|\,\stackrel?=\,1^2+1-3\\~\\ 1\,\stackrel?=\,1+1-3\\~\\ 1\,\stackrel?=\,-1\)

 

No, so  \(x=1\)  is not a solution.

 

So the solutions are  \(x=\sqrt3\)  and  \(x=-3\)  .

hectictar  May 6, 2018

7 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy