+0  
 
0
526
2
avatar

http://prntscr.com/6le9v0

Guest Mar 25, 2015

Best Answer 

 #2
avatar+92623 
+10

Mmm,

 

first  $$\frac{\alpha}{2}$$   is between  45 and 67.5 degrees.   so that is the first quadrant.   All trig ratios are positive

 

so   $$\alpha$$    must be between 90 and 135 degrees so that is the second quadrant.  Only sine and cosec are positive all other ratios will be negative,

 

Now

 

$$\\cos \left(\frac{\alpha}{2}\right)=\frac{5}{8}\\\\
cos^2 \left(\frac{\alpha}{2}\right)=\frac{25}{64}\\\\
cos^2 \left(\frac{\alpha}{2}\right)+sin^2 \left(\frac{\alpha}{2}\right)=1}\\\\
\frac{25}{64}+sin^2 \left(\frac{\alpha}{2}\right)=1}\\\\
sin^2 \left(\frac{\alpha}{2}\right)=1-\frac{25}{64}\\\\
sin^2 \left(\frac{\alpha}{2}\right)=\frac{39}{64}\\\\
sin \left(\frac{\alpha}{2}\right)=\frac{\sqrt{39}}{8}\\\\\\$$

 

$$\\sin(\alpha)
= sin(\frac{\alpha}{2}+\frac{\alpha}{2})\\\\
sin(\alpha)=2sin\frac{\alpha}{2}cos\frac{\alpha}{2}\\\\
sin(\alpha)=2*\frac{\sqrt{39}}{8}*\frac{5}{8}\\\\
sin(\alpha)=\frac{\sqrt{39}}{4}*\frac{5}{8}\\\\
sin(\alpha)=\frac{5\sqrt{39}}{32}\\\\\\
Cosec(\alpha)=\frac{32}{5\sqrt{39}}\\\\
Cosec(\alpha)=\frac{32\sqrt{39}}{5*39}\\\\
Cosec(\alpha)=\frac{32\sqrt{39}}{195}\\\\$$

 

$$\\cos(\alpha) = cos(\frac{\alpha}{2}+\frac{\alpha}{2})\\\\
cos(\alpha)=cos^2(\frac{\alpha}{2})-sin^2(\frac{\alpha}{2})\\\\
cos(\alpha)=\frac{25}{64}-\frac{39}{64}\\\\
cos(\alpha)=-\frac{14}{64}\\\\
cos(\alpha)=-\frac{7}{32}\\\\\\
sec(\alpha)=-\frac{32}{7}\\\\\\$$

 

$$\\tan(\alpha)=sin(\alpha)}\div{cos(\alpha)}\\\\
tan(\alpha)=\frac{5\sqrt{39}}{32}\div\frac{-7}{32}\\\\
tan(\alpha)=\frac{5\sqrt{39}}{32}\times\frac{32}{-7}\\\\
tan(\alpha)=-\frac{5\sqrt{39}}{7}\\\\\\
cot(\alpha)=-\frac{7}{5\sqrt{39}}\\\\
cot(\alpha)=-\frac{7\sqrt{39}}{5*39}\\\\
cot(\alpha)=-\frac{7\sqrt{39}}{195}\\\\$$

Melody  Mar 26, 2015
 #1
avatar+92623 
+5

Melody  Mar 26, 2015
 #2
avatar+92623 
+10
Best Answer

Mmm,

 

first  $$\frac{\alpha}{2}$$   is between  45 and 67.5 degrees.   so that is the first quadrant.   All trig ratios are positive

 

so   $$\alpha$$    must be between 90 and 135 degrees so that is the second quadrant.  Only sine and cosec are positive all other ratios will be negative,

 

Now

 

$$\\cos \left(\frac{\alpha}{2}\right)=\frac{5}{8}\\\\
cos^2 \left(\frac{\alpha}{2}\right)=\frac{25}{64}\\\\
cos^2 \left(\frac{\alpha}{2}\right)+sin^2 \left(\frac{\alpha}{2}\right)=1}\\\\
\frac{25}{64}+sin^2 \left(\frac{\alpha}{2}\right)=1}\\\\
sin^2 \left(\frac{\alpha}{2}\right)=1-\frac{25}{64}\\\\
sin^2 \left(\frac{\alpha}{2}\right)=\frac{39}{64}\\\\
sin \left(\frac{\alpha}{2}\right)=\frac{\sqrt{39}}{8}\\\\\\$$

 

$$\\sin(\alpha)
= sin(\frac{\alpha}{2}+\frac{\alpha}{2})\\\\
sin(\alpha)=2sin\frac{\alpha}{2}cos\frac{\alpha}{2}\\\\
sin(\alpha)=2*\frac{\sqrt{39}}{8}*\frac{5}{8}\\\\
sin(\alpha)=\frac{\sqrt{39}}{4}*\frac{5}{8}\\\\
sin(\alpha)=\frac{5\sqrt{39}}{32}\\\\\\
Cosec(\alpha)=\frac{32}{5\sqrt{39}}\\\\
Cosec(\alpha)=\frac{32\sqrt{39}}{5*39}\\\\
Cosec(\alpha)=\frac{32\sqrt{39}}{195}\\\\$$

 

$$\\cos(\alpha) = cos(\frac{\alpha}{2}+\frac{\alpha}{2})\\\\
cos(\alpha)=cos^2(\frac{\alpha}{2})-sin^2(\frac{\alpha}{2})\\\\
cos(\alpha)=\frac{25}{64}-\frac{39}{64}\\\\
cos(\alpha)=-\frac{14}{64}\\\\
cos(\alpha)=-\frac{7}{32}\\\\\\
sec(\alpha)=-\frac{32}{7}\\\\\\$$

 

$$\\tan(\alpha)=sin(\alpha)}\div{cos(\alpha)}\\\\
tan(\alpha)=\frac{5\sqrt{39}}{32}\div\frac{-7}{32}\\\\
tan(\alpha)=\frac{5\sqrt{39}}{32}\times\frac{32}{-7}\\\\
tan(\alpha)=-\frac{5\sqrt{39}}{7}\\\\\\
cot(\alpha)=-\frac{7}{5\sqrt{39}}\\\\
cot(\alpha)=-\frac{7\sqrt{39}}{5*39}\\\\
cot(\alpha)=-\frac{7\sqrt{39}}{195}\\\\$$

Melody  Mar 26, 2015

23 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.