+0  
 
0
305
1
avatar+445 

https://snag.gy/fIHzQr.jpg

Really confused by the question please explain smiley

YEEEEEET  Feb 14, 2018
 #1
avatar+92395 
+2

Here's my logic

 

Call the Height of the cylinder, H.....note that 2m of this is already filled in the first 5 hours

 

Call the volume filled  in the last 4 hrs   =   

 

pi * [ H - 2 ]  * 3^2  =         9pi [ H - 2 ]  m^3

 

So....in every hour....the volume filled must just be  1/4 of this   

 

(9/4)pi [ H - 2 ]  m^3

 

Now ....call the volume of the cone filled =   pi/3 * 4 * 3^2  =  12 pi   m^3

And note that  if the sand is 6m above the vertex of the cone after 5 hrs, then 2m of the cylinder are also filled in the first 5 hours....so....the volume of the partially filled cylinder  = 

pi * 2 * 3^2  =   18pi  m^3

 

So....the total volume filled after 5 hours just must be  12pi + 18 pi   =  30 pi m^3

So...in one hour the volume filled  is just 1/5 of this  = 6 pi m^3

 

But the volume filled  every hour is the same which implies that

 

(9/4)pi [ H - 2 ]  m^3  =  6 pi m ^3   so

 

(9/4) pi [ H - 2 ]  =  6 pi         divide the  "pi's "  out

 

(9/4) [ H - 2 ]  =  6 pi       multiply both sides by  4/9

 

H - 2   =  6(4/9)

 

H - 2  =  24/9    =  8/ 3

 

H  =  8/3  + 2

 

H  =  8/3 + 6/3

 

H  =  14/3    m  =    cylinder height

 

 

cool cool cool

CPhill  Feb 14, 2018
edited by CPhill  Feb 14, 2018

26 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.