+0  
 
0
48
1
avatar+100 

https://snag.gy/fIHzQr.jpg

Really confused by the question please explain smiley

YEEEEEET  Feb 14, 2018
Sort: 

1+0 Answers

 #1
avatar+82944 
+2

Here's my logic

 

Call the Height of the cylinder, H.....note that 2m of this is already filled in the first 5 hours

 

Call the volume filled  in the last 4 hrs   =   

 

pi * [ H - 2 ]  * 3^2  =         9pi [ H - 2 ]  m^3

 

So....in every hour....the volume filled must just be  1/4 of this   

 

(9/4)pi [ H - 2 ]  m^3

 

Now ....call the volume of the cone filled =   pi/3 * 4 * 3^2  =  12 pi   m^3

And note that  if the sand is 6m above the vertex of the cone after 5 hrs, then 2m of the cylinder are also filled in the first 5 hours....so....the volume of the partially filled cylinder  = 

pi * 2 * 3^2  =   18pi  m^3

 

So....the total volume filled after 5 hours just must be  12pi + 18 pi   =  30 pi m^3

So...in one hour the volume filled  is just 1/5 of this  = 6 pi m^3

 

But the volume filled  every hour is the same which implies that

 

(9/4)pi [ H - 2 ]  m^3  =  6 pi m ^3   so

 

(9/4) pi [ H - 2 ]  =  6 pi         divide the  "pi's "  out

 

(9/4) [ H - 2 ]  =  6 pi       multiply both sides by  4/9

 

H - 2   =  6(4/9)

 

H - 2  =  24/9    =  8/ 3

 

H  =  8/3  + 2

 

H  =  8/3 + 6/3

 

H  =  14/3    m  =    cylinder height

 

 

cool cool cool

CPhill  Feb 14, 2018
edited by CPhill  Feb 14, 2018

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details