We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
65
3
avatar+24 

1)What is the domain of the function \( f(x) = \sqrt{3x+6} - 7\)? Answer in interval notation.

 

2)Express the domain of \(f(x) = \dfrac{\sqrt{-2x+7}}{x}\) in interval notation.

 

3)Express the domain of \(f(x) = \dfrac{\sqrt{x+1}}{(x-2)(x-4)}\) in interval notation.

 Sep 14, 2019
 #1
avatar+2257 
+2

1. the range of x is going to be like a ray, with a end point while goes to infinity in another direction.

 

\(f(x)=\sqrt{{\color{red}3}x+{\color{red}6}}-7\)

 

You do \((-1)*\frac{{\color{red}6}}{{\color{red}3}}\Rightarrow-2\)

 

This means the minimum of x is -2, while the maximum goes to infinity.

 Sep 14, 2019
 #2
avatar+104723 
+2

2.       √[-2x + 7]

          ________

                x

 

First of all....note that x CANNOT  =  0   because this would mean that we are dividing by 0 which is undefined

 

Also....under the radical.....    -2x + 7  must be   ≥ 0

 

So

 

-2x + 7  ≥  0

 

-2x  ≥ - 7       divide both sides by -2   and reverse the inequality sign

 

x  ≤ 7/2

 

So....the domain is

 

(-infinity, 0)  U  ( 0, 7/2)

 

See the graph here to confirm this :  https://www.desmos.com/calculator/qg90mexgvo

 

 

 

cool cool cool

 Sep 14, 2019
 #3
avatar+104723 
+2

3.      √ [ x + 1]

        ___________

          (x - 2) (x - 4)

 

First note that   if x = 2   or x = 4......the denominator  = 0....so.....these two values are not in the domain

 

Also...under the radical.....x + 1  must be  ≥  0

 

So

 

x + 1  ≥ 0

 

x  ≥ -1

 

So   the domain is

 

[ -1, 2)  U (2, 4)  U (4, infinity)

 

See the graph here : https://www.desmos.com/calculator/a4regqy27f

 

 

cool cool cool

 Sep 14, 2019

28 Online Users

avatar