+0  
 
0
376
2
avatar

sinh^-1 (1)

 Sep 14, 2017
 #1
avatar+7940 
0

sinh^-1 (1)

 

\(sinh^{-1}(1°)_{deg}=asinh(1°)_{deg}\color{blue}=50.498986710526\\ sinh^{-1}(1)_{rad}=asinh(1)_{rad}\color{blue}=0.88137358702\)

 

laugh  !

 Sep 14, 2017
edited by asinus  Sep 14, 2017
 #2
avatar+21346 
0

hyperbolic functions

\(sinh^{-1} (1)\)

 

Formula:

\(\begin{array}{|rcll|} \hline sinh(z) &=& \frac{e^z-e^{-z}}{2} \\ z &=& sinh^{-1} (\frac{e^z-e^{-z}}{2} ) \\ \hline \end{array}\)

 

\(z=\ ?\)

\(\begin{array}{|rcll|} \hline \frac{e^z-e^{-z}}{2} &=& 1 \\ e^z-e^{-z} &=& 2 \\ e^z-\frac{1}{e^{z}} &=& 2 \quad & | \quad \text{substitute } e^z = x \\ x-\frac{1}{x} &=& 2 \quad & | \quad \cdot x \\ x^2-1 &=& 2x \\ x^2-2x-1 &=& 0 \\\\ x &=& \frac{2\pm \sqrt{4-4\cdot(-1)} }{2} \\ &=& \frac{2\pm \sqrt{8} }{2} \\ &=& \frac{2\pm \sqrt{2\cdot 4 } }{2} \\ &=& \frac{2\pm 2\sqrt{2} }{2} \\ \mathbf{x} &\mathbf{=}& \mathbf{1\pm \sqrt{2}} \quad & | \quad x = e^z \\ e^z & = & 1\pm \sqrt{2} \quad & | \quad \ln() \\ z & =& \ln(1\pm \sqrt{2}) \\\\ z_1 &=& \ln(1 + \sqrt{2}) \\ z_2 &=& \ln(1 - \sqrt{2}) \quad & | \quad \text{no solution } \quad 1 - \sqrt{2} < 0! \\\\ \mathbf{sinh^{-1} (1)= z} &\mathbf{=}& \mathbf{\ln(1 + \sqrt{2})} \\ \mathbf{sinh^{-1} (1) } &\mathbf{=}& \mathbf{0.88137358702\ldots} \\ \hline \end{array}\)

 

laugh

 Sep 14, 2017

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.