+0  
 
0
574
2
avatar

i^61 ???

 Nov 23, 2015

Best Answer 

 #1
avatar+97500 
+10

i^61

 

\(i^{61} = i^{60}\times i\\ = (i^{4})^{15} \times i\\ = [(i^2)^2]^{15} \times i\\ = [(-1)^2]^{15} \times i\\ = [1]^{15} \times i\\ = 1\times i\\ =i\)

.
 Nov 23, 2015
 #1
avatar+97500 
+10
Best Answer

i^61

 

\(i^{61} = i^{60}\times i\\ = (i^{4})^{15} \times i\\ = [(i^2)^2]^{15} \times i\\ = [(-1)^2]^{15} \times i\\ = [1]^{15} \times i\\ = 1\times i\\ =i\)

Melody Nov 23, 2015
 #2
avatar+95884 
+10

Thanks, Melody for that answer....

 

Here's another way to evalute this for    i    raised to any  "n"   positve integer

 

n mod 4  =  1    →   i

 

n mod 4  =  2   →   -1

 

n mod 4  = 3   →   - i

 

n mod 4  = 4   →    1

 

So

 

i^61  =      61 mod 4   = 1    →   i            just as Melody found   !!!

 

 

 

cool cool cool

 Nov 23, 2015
edited by CPhill  Nov 23, 2015

19 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.