+0  
 
0
6
1
avatar+38 

Consider the complex numbers  and  in the complex plane below:
[asy]
size(250);
import TrigMacros;

real big = 5;

for (int i = 1; i < big+1; ++i)
{
draw(Circle((0,0),i), lightblue + linewidth(0.4));
}

for(int i=0;i<360;i+=15) {
draw(rotate(i)*((-big,0)--(big,0)), lightblue + linewidth(0.4));
}

rr_cartesian_axes(-big,big,-big,big,complexplane=true);

pair V, Z, WW;

V= (sqrt(2)/2, sqrt(2)/2);
WW = (2*sqrt(2), 2*sqrt(2));
Z = (0, -3);

dot("$v$", V, N);
dot("$w$", WW, N);
dot("$z$", Z, E);
[/asy]
a)If we have that v=r1e^iθ1, w=r2e^iθ2, z=r3e^iθ3, for positive r1, r2 and r3 and for θ1, θ2 and θ3 between 0 and 2pi, enter r1, θ1, r2, θ2, r3, θ3 in that order

 

b)Consider the complex numbers in the complex plane below:

[asy]
size(250);
import TrigMacros;

real big = 5;

for (int i = 1; i < big+1; ++i)
{
draw(Circle((0,0),i), lightblue + linewidth(0.4));
}

for(int i=0;i<360;i+=15) {
draw(rotate(i)*((-big,0)--(big,0)), lightblue + linewidth(0.4));
}

rr_cartesian_axes(-big,big,-big,big,complexplane=true);

pair V, Z, WW;

V= (sqrt(2), -sqrt(2));
WW = 2(sqrt(3), 1)*dir(-15);
Z = (-3,0);

dot("$v$", V, N);
dot("$w$", WW, N);
dot("$z$", Z, S);
[/asy]

If the conjugates of these complex numbers satisfy conj(v)=r1e^iθ1, conj(w)=r2e^iθ2, conj(z)=r3e^iθ3, for positive r1, r2 and r3 and for θ1, θ2 and θ3 between 0 and 2pi, enter r1, θ1, r2, θ2, r3, θ3 in that order

Thanks!

 Aug 13, 2024
 #1
avatar+1839 
0

For this problem, you must consider magnitude and argument of complex numbers geometrically.

 

The answers are as follows:

 

r_1 = 16

 

theta_1 = 3*pi/2

 

r_2 = sqrt(3)

 

theta_2 = 5*pi/4

 

r_3 = 12

 

theta_3 = pi/3

 Oct 10, 2024

2 Online Users