Rewrite the expression as a single logarithm . Then the function
\(\log_2 x + 5 \log_2 y -3 \log_2 z\)
Rewrite the expressionas a single logarithm . Then the function
\(\ln (a+b) + 4 \ln (a-b) - 3 \ln c\)
Rewrite the expression as a single logarithm . Then the function
\(5 \log x - 4 \log (x^2+1) +2 \log (x-1)\)
log2 x + 5 log2 y - 3 log 2 x =
log2 x + log2 y5 - log2 x3 =
log2 [ ( x y5 ) / x3 ] =
log2 [ y5 / x2 ]
ln ( a + b) + 4 ln ( a - b) - 3 ln c =
ln (a + b) + ln ( a - b)4 - ln c3 =
ln ( [ (a + b) (a - b)4 ] / c3 )
5 log x - 4 log (x2 + 1) + 2 log (x - 1) =
log x5 - log (x2 + 1)4 + log ( x - 1)2 =
log [ (x5 * (x - 1)2 ) / (x2 + 1)4 ]