+0  
 
+1
95
2
avatar+81 

 

Rewrite the expression as a single logarithm . Then the function 

 

\(\log_2 x + 5 \log_2 y -3 \log_2 z\)

 

 Rewrite the expressionas a single logarithm . Then the function

 

\(\ln (a+b) + 4 \ln (a-b) - 3 \ln c\)

 

 Rewrite the expression as a single logarithm . Then the function

 

 \(5 \log x - 4 \log (x^2+1) +2 \log (x-1)\)

Sloan  Jun 6, 2018
 #1
avatar+90141 
+1

logx  + 5 log2 y  - 3 log 2 x  =

 

log2 x  + log2 y - log2 x3 =

 

log2  [ ( x y5 ) / x3 ] =

 

log2 [ y5 / x2 ]

 

 

ln ( a + b)  + 4 ln ( a - b) - 3 ln c  =

 

ln (a + b) + ln ( a - b)4  - ln c3 =

 

ln  ( [ (a + b) (a - b)4 ] / c3 )

 

 

5 log x - 4 log (x2 + 1)  + 2 log (x - 1)  =

 

log x5  - log (x2 + 1)4 + log ( x - 1)2   =

 

log   [   (x5 * (x - 1)2 ) / (x2 + 1)4  ]

 

 

 

cool cool cool

CPhill  Jun 6, 2018
 #2
avatar
0

A small typo in the first one. It should read:

 

Log_2[xy^5 / z^3]

Guest Jun 6, 2018

38 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.