+0  
 
+2
357
3
avatar

This is the problem:

What number does X have to be so that the following equasion is correct:

2^(x-1) + 2^(x-4) + 2^(x-2) = 6,5555...

 Nov 27, 2017
 #1
avatar+17747 
+1

Solve:  2x-1 + 2x-4 + 2x-2  =  6,5555...

 

First:

     6,55555...  =  6 + 5/9  =  54/9 + 5/9  =  59/9

 

The terms:  2x-1,  2x-4, and 2x-2 can all be written in terms of 2x-4:

     2x-1  =  2x-4+3  =  2x-4·23  =  2x-4·8

     2x-4  =  2x-4·1

     2x-2  =  2x-4+2  =  2x-4·22  =  2x-4·4

 

Therefore, the problem can be re-written as:

     2x-4·8 + 2x-4·1 + 2x-4·4  =  59/9

Factoring out the term  2x-4:

     2x-4(8 + 1 + 4)  =  59/9

     2x-4(13)  =  59/9

Dividing by 13:

     2x-4  =  (59/9) / 13

     2x-4  =  59/117

Taking the log of both sides:

     log( 2x-4 )  = log(59/117)

Simplifying:

     (x-4)·log(2)  =  log(59/117)

Dividing by log(2):

     x - 4  =  log(59/117) / log(2)

Adding 4:

     x  =  log(59/117) / log(2) + 4

     x  =  3.012278... 

 Nov 27, 2017
 #2
avatar
+1

Solve for x over the real numbers:
2^(x - 4) + 2^(x - 2) + 2^(x - 1) = 59/9

Simplify and substitute y = 2^x.
2^(x - 4) + 2^(x - 2) + 2^(x - 1) = (13×2^x)/16
 = (13 y)/16:
(13 y)/16 = 59/9

Multiply both sides by 16/13:
y = 944/117

Substitute back for y = 2^x:
2^x = 944/117

Take the logarithm base 2 of both sides:
x = (ln(944/117))/(ln(2))

 Nov 27, 2017
edited by Guest  Nov 27, 2017
 #3
avatar+9917 
+1

This is the problem:

What number does X have to be so that the following equasion is correct:

2^(x-1) + 2^(x-4) + 2^(x-2) = 6,5555...

laugh

 Nov 27, 2017

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.