+0  
 
+1
204
3
avatar

I am thinking of two numbers in the ratio . The difference between the two numbers is . What is the sum of the two numbers?

Guest May 24, 2018

Best Answer 

 #3
avatar+20025 
+1

I am thinking of two numbers in the ratio 5 : 3 . 

The difference between the two numbers is 90. 

What is the sum of the two numbers?

 

\(\begin{array}{|lrcll|} \hline (1) & \frac{a}{b} &=& \frac{5}{3} \quad & | \quad \cdot b \\ & a &=& \frac53b \\\\ (2) & a-b &=& 90 \quad & | \quad a = \frac53b \\ & \frac53b - b &=& 90 \\ & \frac53b - \frac33 b &=& 90 \\ & \frac23b &=& 90 \quad & | \quad \cdot \frac32 \\ & b &=& 90 \cdot \frac32 \\ & b &=& 3\cdot 45 \\ & b &=& 135 \\ \\ & a &=& \frac53b \quad & | \quad b = 135 \\ & a &=& \frac53 \cdot 135 \\ & a &=& 5\cdot 45 \\ & a &=& 225 \\\\ & a+b &=& 225 + 135 \\ & \mathbf{a+b} & \mathbf{=} & \mathbf{360} \\ \hline \end{array} \)

 

The sum of the two numbers is 360

 

laugh

heureka  May 25, 2018
 #1
avatar+7493 
0

I am thinking of two numbers in the ratio . The difference between the two numbers is . What is the sum of the two numbers?

 

Hello guest!

 

\(\color{BrickRed}if\ (relationship\ R=\frac{a}{b}=a-b)\ then\\ relationship\ R=a-b\\ a=R+b\\ relationship\ R=\frac{a}{b}\\ b=\frac{a}{R}\\ a+b=R+b+\frac{a}{R}\\ \color{blue}a+b=\frac{R^2+a+bR}{R}\)

 

Did you mean something like that?

Greatings

laugh  !

asinus  May 24, 2018
edited by asinus  May 24, 2018
 #2
avatar
0

Sorry, the asy did not load 

 

I am thinking of two numbers in the ratio 5 : 3 . The difference between the two numbers is 90. What is the sum of the two numbers?

Guest May 25, 2018
 #3
avatar+20025 
+1
Best Answer

I am thinking of two numbers in the ratio 5 : 3 . 

The difference between the two numbers is 90. 

What is the sum of the two numbers?

 

\(\begin{array}{|lrcll|} \hline (1) & \frac{a}{b} &=& \frac{5}{3} \quad & | \quad \cdot b \\ & a &=& \frac53b \\\\ (2) & a-b &=& 90 \quad & | \quad a = \frac53b \\ & \frac53b - b &=& 90 \\ & \frac53b - \frac33 b &=& 90 \\ & \frac23b &=& 90 \quad & | \quad \cdot \frac32 \\ & b &=& 90 \cdot \frac32 \\ & b &=& 3\cdot 45 \\ & b &=& 135 \\ \\ & a &=& \frac53b \quad & | \quad b = 135 \\ & a &=& \frac53 \cdot 135 \\ & a &=& 5\cdot 45 \\ & a &=& 225 \\\\ & a+b &=& 225 + 135 \\ & \mathbf{a+b} & \mathbf{=} & \mathbf{360} \\ \hline \end{array} \)

 

The sum of the two numbers is 360

 

laugh

heureka  May 25, 2018

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.